Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113597
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.contributorResearch Institute for Smart Energy-
dc.creatorWang, Men_US
dc.creatorTang, Ren_US
dc.creatorRen, Xen_US
dc.creatorWu, Hen_US
dc.creatorZhang, Ten_US
dc.creatorCheng, Sen_US
dc.date.accessioned2025-06-16T00:36:35Z-
dc.date.available2025-06-16T00:36:35Z-
dc.identifier.issn0016-2361en_US
dc.identifier.urihttp://hdl.handle.net/10397/113597-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectAb initio intermolecular potentialen_US
dc.subjectHigh-order Virial equation of stateen_US
dc.subjectJet-stirred reactoren_US
dc.subjectSupercritical oxidationen_US
dc.titleThe first application of high-order Virial equation of state and ab initio multi-body potentials in modeling supercritical oxidation in jet-stirred reactorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume382en_US
dc.identifier.doi10.1016/j.fuel.2024.133753en_US
dcterms.abstractSupercritical oxidation processes in jet-stirred reactors (JSR) have been modeled based on ideal gas assumption. This can lead to significant errors in or complete misinterpretation of modeling results. Therefore, this study newly developed a framework to model supercritical oxidation in JSRs by incorporating ab initio multi-body molecular potentials and high-order mixture Virial equation of state (EoS) into real-fluid conservation laws, with the related numerical strategies highlighted. With comparisons with the simulation results based on ideal EoS and the experimental data from high-pressure JSR experiments, the framework is proved to be a step forward compared to the existing JSR modeling frameworks. To reveal the real-fluid effects on the oxidation characteristics in jet-stirred reactors, simulations are further conducted at a wide range of conditions (i.e., temperatures from 500 to 1100 K and pressures from 100 to 1000 bar). The real-fluid effect is found to significantly promote fuel oxidation reactivity, especially at low temperatures, high pressures, and for mixtures with heavy fuels. The significant influences of real-fluid behaviors on JSR oxidation characteristics emphasize the need to adequately incorporate these effects for future modeling studies in JSR at high pressures, which has now been enabled through the framework proposed in this study.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationFuel, 15 Feb. 2025, v. 382, 133753en_US
dcterms.isPartOfFuelen_US
dcterms.issued2025-02-15-
dc.identifier.scopus2-s2.0-85209361478-
dc.identifier.eissn1873-7153en_US
dc.identifier.artn133753en_US
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3678-
dc.identifier.SubFormID50683-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Natural Science Foundation of Guangdong Province under 2023A1515010976en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.