Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113541
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorZhang, YYen_US
dc.creatorYang, CRen_US
dc.creatorTong, Xen_US
dc.creatorZhou, Jen_US
dc.creatorLiu, Len_US
dc.creatorXiao, Men_US
dc.creatorKe, HBen_US
dc.creatorChan, KCen_US
dc.creatorWang, WHen_US
dc.date.accessioned2025-06-11T08:29:55Z-
dc.date.available2025-06-11T08:29:55Z-
dc.identifier.issn1001-0521en_US
dc.identifier.urihttp://hdl.handle.net/10397/113541-
dc.language.isoenen_US
dc.publisherGeneral Research Institute for Nonferrous Metalsen_US
dc.subjectDirected energy depositionen_US
dc.subjectHigh temperatureen_US
dc.subjectOxidation sequence designen_US
dc.subjectRefractory high entropy alloyen_US
dc.subjectWear resistanceen_US
dc.titleOxidation sequence modulation induced superior high-temperature tribological performance of Ti-Hf-Nb-V refractory high entropy alloy fabricated through directed energy depositionen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Oxidation sequence modulation induced superior high-temperature tribological performance of the Ti-Hf-Nb-V refractory high entropy alloy fabricated through directed energy depositionen_US
dc.identifier.spage2695en_US
dc.identifier.epage2704en_US
dc.identifier.volume44en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1007/s12598-024-03153-2en_US
dcterms.abstractTo fulfill the demands of applications under severe operational conditions, alloys should possess outstanding wear resistance at elevated temperatures. A Ti-Hf-Nb-V based refractory high entropy alloy (RHEA) was successfully produced using the directed energy deposition (DED) technique, which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum. Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers, which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69 × 10–4 mm3·(N·m)−1 at room temperature to 6.90 × 10–7 mm3·(N·m)−1 at 600 °C. These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.en_US
dcterms.abstract为了满足严苛条件下的应用需求,合金通常需要具备优异的高温耐磨性能。通过定向能量沉积技术制备的Ti-Hf-Nb-V难熔高熵合金,没有形成致命的缺陷,并在较宽的温度范围内表现出良好的机械性能。通过设计该合金中的氧化顺序,在摩擦磨损实验中可以形成氧化物的纳米层。在600℃下,该氧化物纳米层的形成能够显著降低磨损率,由室温下的2.69 × 10-4 mm3·(N·m)-1显著降低至6.90 × 10-7 mm3·(N·m)-1。该结果表明,通过增材制造可以制备具有优异高温耐磨性能的难熔高熵合金,并为开发能够承受极端条件的功能涂层开辟了新途径。en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationRare metals, Apr. 2025, v. 44, no. 4, p. 2695-2704en_US
dcterms.isPartOfRare metalsen_US
dcterms.issued2025-04-
dc.identifier.scopus2-s2.0-105002970941-
dc.identifier.eissn1867-7185en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3653, a3680, a4206-
dc.identifier.SubFormID50583, 50703, 52261-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Guangdong Major Project of Basic and Applied Basic Research Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-01-17en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-01-17
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.