Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113526
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Health Technology and Informatics-
dc.creatorPeng, T-
dc.creatorRuan, YW-
dc.creatorGu, YD-
dc.creatorHuang, J-
dc.creatorTang, CY-
dc.creatorCai, J-
dc.date.accessioned2025-06-10T08:56:26Z-
dc.date.available2025-06-10T08:56:26Z-
dc.identifier.issn2096-0654-
dc.identifier.urihttp://hdl.handle.net/10397/113526-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication T. Peng, Y. Ruan, Y. Gu, J. Huang, C. Tang and J. Cai, "Coarse-to-Fine Approach: Automatic Delineation of Kidney Ultrasound Data," in Big Data Mining and Analytics, vol. 7, no. 4, pp. 1321-1332 is available at https://dx.doi.org/10.26599/BDMA.2024.9020008.en_US
dc.subjectPolyline segment techniqueen_US
dc.subjectArtificial neural networken_US
dc.subjectExplainable mathematical mapping formulaen_US
dc.subjectUltrasound kidney segmentationen_US
dc.titleCoarse-to-fine approach : automatic delineation of kidney ultrasound dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1321-
dc.identifier.epage1332-
dc.identifier.volume7-
dc.identifier.issue4-
dc.identifier.doi10.26599/BDMA.2024.9020008-
dcterms.abstractWe present an automatic kidney segmentation method using ultrasound images. This method employs a coarse-to-fine approach to tackle the challenge of unclear and fuzzy boundaries. Four key innovations are introduced to enhance the segmentation process's accuracy and efficiency. First, an automatic deep fusion training network serves as a coarse segmentation strategy. Second, we propose an explainable mathematical mapping formula to better represent the kidney contour. Third, by utilizing the characteristics of the principal curve, a neural network automatically refines curve shapes, thus reducing model errors. Finally, we employ an intelligent searching polyline segment method for automatic kidney contour segmentation. The results show that our method achieves high accuracy and stability in segmenting kidney ultrasound images. This work's contributions include the deep fusion training network, intelligent searching polyline segment method, and explainable mathematical mapping formula, which are applicable to other medical image segmentation tasks. Additionally, this approach uses a mean-shift clustering model, supplanting standard projection and vertex optimization steps.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationBig data mining and analytics, Dec. 2024, v. 7, no. 4, p. 1321-1332-
dcterms.isPartOfBig data mining and analytics-
dcterms.issued2024-12-
dc.identifier.isiWOS:001381381200017-
dc.identifier.eissn2097-406X-
dc.description.validate202506 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextChina Postdoctoral Science Foundation; the China Social Development Plan of Taizhouen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Peng_Coarse-To-Fine_Approach.pdf20.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.