Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113515
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textiles-
dc.creatorCheng, JZ-
dc.creatorWang, K-
dc.creatorNing, XY-
dc.creatorZhang, JC-
dc.creatorJia, H-
dc.creatorTawiah, B-
dc.creatorJiang, SX-
dc.date.accessioned2025-06-10T08:56:21Z-
dc.date.available2025-06-10T08:56:21Z-
dc.identifier.urihttp://hdl.handle.net/10397/113515-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Cheng, J., Wang, K., Ning, X., Zhang, J., Jia, H., Tawiah, B., & Jiang, S. (2024). Manganese-Coordinated Cellulose Based-Separator for Efficient and Reliable Zn-Ion Transport. Batteries, 10(12), 416 is available at https://dx.doi.org/10.3390/batteries10120416.en_US
dc.subjectAqueous zinc-ion batteriesen_US
dc.subjectCellulose nanofibrilen_US
dc.subjectFunctional separatoren_US
dc.subjectFacilitated ion transporten_US
dc.subjectZn dendritesen_US
dc.titleManganese-coordinated cellulose based-separator for efficient and reliable Zn-Ion transporten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume10-
dc.identifier.issue12-
dc.identifier.doi10.3390/batteries10120416-
dcterms.abstractAqueous zinc-ion batteries (AZIBs) are increasingly being acknowledged as a promising candidate to safely power large-scale energy storage systems and portable devices. However, the development of effective separator materials remains a significant challenge due to issues such as harmful dendrite growth on zinc (Zn) anodes and parasitic side reactions in aqueous electrolytes. To address this challenge, we synthesize a manganese-coordinated cellulose nanofibril (Mn-CNF)-based separator for high-performance AZIBs. This separator affords enhanced ion transport channel, a large number of hydroxyl groups, and exceptional mechanical properties, with a tensile strength of 2.8 MPa and superior ionic conductivity of 5.14 mScm-1. These attributes collectively enhance Zn-ion transport, minimize nucleation overpotential for Zn, and accelerate the Zn deposition kinetics, thus significantly outperforming the untreated CNF separators. Consequently, the Zn-
dcterms.abstractMnO2 battery with the Mn-CNF separator shows a marked improvement in the galvanostatic rate performance and cycling stability by effectively accelerating and optimizing Zn-ion transport. This study offers valuable insights into the development of efficient and reliable separators for advanced electrochemical energy storage technologies.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationBatteries-basel, Dec. 2024, v. 10, no. 12, 416-
dcterms.issued2024-12-
dc.identifier.isiWOS:001386959200001-
dc.identifier.eissn2313-0105-
dc.identifier.artn416-
dc.description.validate202506 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextOpening Project of the Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province; Research Centre of Textiles for Future Fashionen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
batteries-10-00416-v2.pdf1.31 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.