Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113486
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorTeng, Jen_US
dc.creatorYiu, KFCen_US
dc.date.accessioned2025-06-10T08:56:02Z-
dc.date.available2025-06-10T08:56:02Z-
dc.identifier.issn1547-5816en_US
dc.identifier.urihttp://hdl.handle.net/10397/113486-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rightsOpen Access Under a Creative Commons license (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Jiao Teng, Ka Fai Cedric Yiu. Nonlinear optimization via novel neural network methods. Journal of Industrial and Management Optimization, 2025, 21(4): 2472-2489 is available at https://dx.doi.org/10.3934/jimo.2024179.en_US
dc.subjectNonlinear optimization problemsen_US
dc.subjectNeural networksen_US
dc.titleNonlinear optimization via novel neural network methodsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2472en_US
dc.identifier.epage2489en_US
dc.identifier.volume21en_US
dc.identifier.issue4en_US
dc.identifier.doi10.3934/jimo.2024179en_US
dcterms.abstractThis paper introduces a novel approach for solving high-dimensional nonlinear optimization problems by integrating neural networks into the optimization process. The method leverages the capabilities of neural networks to efficiently handle complex, high-dimensional data and to approximate discrete numerical solutions of nonlinear optimization problems using continuous functions. By combining the nonlinear mapping ability of neural networks with iterative optimization algorithms, the proposed approach provides a superior method to solve nonlinear optimization problems. The paper demonstrates the adaptability of neural network-based solution methods in solving various nonlinear optimization problems and illustrates that the method can be applied to many different problem scenarios. The effectiveness and correctness of the proposed method are demonstrated through examples.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of industrial and management optimization, Apr. 2025, v. 21, no. 4, p. 2472-2489en_US
dcterms.isPartOfJournal of industrial and management optimizationen_US
dcterms.issued2025-04-
dc.identifier.isiWOS:001406883300001-
dc.identifier.eissn1553-166Xen_US
dc.description.validate202506 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS, OA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; Research Centre for Quantitative Finance; the National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.TAAIMS (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
w056 10.3934_jimo.2024179.pdf2.54 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.