Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113448
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorZhang, Hen_US
dc.creatorZhang, Wen_US
dc.creatorJin, Yen_US
dc.creatorWu, Cen_US
dc.creatorXu, Zen_US
dc.creatorYang, Sen_US
dc.creatorGao, Sen_US
dc.creatorLiu, Fen_US
dc.creatorXu, Wen_US
dc.creatorWang, Sen_US
dc.creatorYao, Hen_US
dc.creatorWang, Zen_US
dc.date.accessioned2025-06-10T08:54:31Z-
dc.date.available2025-06-10T08:54:31Z-
dc.identifier.urihttp://hdl.handle.net/10397/113448-
dc.language.isoenen_US
dc.publisherNature Publishing Groupen_US
dc.titleFreezing droplet ejection by spring-like elastic pillarsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Droplet ejection by spring-like elastic pillarsen_US
dc.identifier.spage765en_US
dc.identifier.epage773en_US
dc.identifier.volume1en_US
dc.identifier.issue12en_US
dc.identifier.doi10.1038/s44286-024-00150-1en_US
dcterms.abstractPreventing water droplet accretion on surfaces is fundamentally interesting and practically important. Water droplets at room temperature can spontaneously detach from surfaces through texture design or coalescence-induced surface-to-kinetic energy transformation. However, under freezing conditions, these strategies become ineffective owing to the stronger droplet–surface interaction and the lack of an energy transformation pathway. Leveraging water volume expansion during freezing, we report a structured elastic surface with spring-like pillars and wetting contrast that renders the spontaneous ejection of freezing water droplets, regardless of their impacting locations. The spring-like pillars can store the work done by the seconds-long volume expansion of freezing droplets as elastic energy and then rapidly release it as kinetic energy within milliseconds. The three-orders-of-magnitude reduction in timescales leads to sufficient kinetic energy to drive freezing droplet ejection. We develop a theoretical model to elucidate the factors determining the successful onset of this phenomenon. Our design is potentially scalable in manufacturing through a numbering-up strategy, opening up applications in deicing, soft robotics and power generation.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNature chemical engineering, Dec. 2024, v. 1, no. 12, p. pages765-773en_US
dcterms.isPartOfNature chemical engineeringen_US
dcterms.issued2024-12-
dc.identifier.eissn2948-1198en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3659, a3721-
dc.identifier.SubFormID50604, 50856-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Tencent Foundation through the XPLORER PRIZE; The Meituan Foundation through the Green Tech Awarden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-12-06en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-12-06
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.