Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113427
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorZhang, H-
dc.creatorXiang, Z-
dc.creatorZach, FJ-
dc.date.accessioned2025-06-10T01:41:41Z-
dc.date.available2025-06-10T01:41:41Z-
dc.identifier.issn0261-5177-
dc.identifier.urihttp://hdl.handle.net/10397/113427-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBig data analyticsen_US
dc.subjectGenerative AIen_US
dc.subjectGPTen_US
dc.subjectManagerial responseen_US
dc.subjectOnline reviewsen_US
dc.subjectReview valenceen_US
dc.subjectTask-Technology Fiten_US
dc.titleGenerative AI vs. humans in online hotel review management : a Task-Technology Fit perspectiveen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume110-
dc.identifier.doi10.1016/j.tourman.2025.105187-
dcterms.abstractDespite Generative AI's ability to produce human-like content, its effectiveness as references for human responses, particularly in online review management, remains unclear. To address this question, this study explores if human responses resembling AI patterns are associated with enhanced customer perceptions. To provide deeper insights, we examined how this relationship shifts under varying technological and task conditions, guided by the Task-Technology Fit theory. In the empirical analysis, we automated responses to 32,129 online reviews using GPT, calculated the similarity between existing managerial responses and AI-generated content, and tested the relationship between human-AI similarity and the perceived helpfulness of review-response pairs. The findings reveal benefits of resembling AI with high model temperatures, particularly for positive reviews, while identifying negative outcomes under lower temperatures. This study enriches our understanding of an emerging technology that could have a huge impact on the industry and provides insights for practitioners to refine AI adoption strategies.-
dcterms.accessRightsembaroged accessen_US
dcterms.bibliographicCitationTourism management, Oct. 2025, v. 110, 105187-
dcterms.isPartOfTourism management-
dcterms.issued2025-10-
dc.identifier.scopus2-s2.0-86000608594-
dc.identifier.eissn1879-3193-
dc.identifier.artn105187-
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3649en_US
dc.identifier.SubFormID50574en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embaroged access
Embargo End Date 2028-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

13
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.