Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113413
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorZuo, L-
dc.creatorMak, MW-
dc.date.accessioned2025-06-06T00:42:13Z-
dc.date.available2025-06-06T00:42:13Z-
dc.identifier.issn2168-2194-
dc.identifier.urihttp://hdl.handle.net/10397/113413-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectCounterfactualsen_US
dc.subjectData augmentationen_US
dc.subjectData scarcityen_US
dc.subjectSpeech-based depression detectionen_US
dc.subjectVector quantizationen_US
dc.titleVector quantization-based counterfactual augmentation for speech-based depression detection under data scarcityen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1109/JBHI.2025.3566767-
dcterms.abstractData scarcity is a common and serious problem in depression detection, often leading to overfitting and bias that degrade the performance of depression detectors. We propose a counterfactual augmentation (CF aug) framework that generates latent features for speechbased depression detection under data-scarce conditions. The generation method is based on exploring how feature changes affect the outcomes. To this end, we introduce a counterfactual layer to a deep network to transform the representation of the original data to its opposite class, while a group-wise vector quantization module helps the model explore how the changes in vectors (or entries) sampled from codebooks affect the outcome. Experimental results demonstrate that CF-aug can alleviate the overfitting and bias problems caused by data scarcity. Our CF-aug framework achieves competitive performance compared to state-of-the-art methods on two depression datasets. We also demonstrate the potential of CF-aug in other domains and modalities for medical diagnosis under data-scarce settings.-
dcterms.accessRightsembaroged accessen_US
dcterms.bibliographicCitationIEEE journal of biomedical and health informatics, Date of Publication: 02 May 2025, Early Access, https://doi.org/10.1109/JBHI.2025.3566767-
dcterms.isPartOfIEEE journal of biomedical and health informatics-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105004199092-
dc.identifier.eissn2168-2208-
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3641en_US
dc.identifier.SubFormID50552en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embaroged access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.