Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113386
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorLuo, Xen_US
dc.creatorZhang, Men_US
dc.creatorHan, Yen_US
dc.creatorYan, Ren_US
dc.creatorWang, Sen_US
dc.date.accessioned2025-06-04T01:34:30Z-
dc.date.available2025-06-04T01:34:30Z-
dc.identifier.issn0952-1976en_US
dc.identifier.urihttp://hdl.handle.net/10397/113386-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectArtificial neural networken_US
dc.subjectGreen shippingen_US
dc.subjectShip fuel consumption predictionen_US
dc.subjectTransfer learningen_US
dc.titleShip fuel consumption prediction based on transfer learning : models and applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume141en_US
dc.identifier.doi10.1016/j.engappai.2024.109769en_US
dcterms.abstractData-driven fuel consumption rate (FCR) prediction models largely depend on the amount of training data, which can be scarce for new ships with limited operating time. To tackle this issue, we implement three transfer learning strategies to leverage knowledge from another seven container ships to construct artificial neural network (ANN)-based FCR prediction models for a target ship with limited data. Numerical experiments reveal that the ANN models incorporating the three transfer strategies outperform the model trained solely on the target ship data, reducing mean absolute percentage error by 12.57%, 6.44%, and 16.03%, respectively. This study also investigates the impacts of target dataset size on the performance of transfer strategies using ship FCR prediction as an example, revealing that the smaller amount of available data, the greater improvement in prediction accuracy using the transfer strategy. These insights contribute to the development of effective operational solutions for enhancing ship energy efficiency and promoting sustainable shipping practices.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEngineering applications of artificial intelligence, 1 Feb. 2025, v. 141, 109769en_US
dcterms.isPartOfEngineering applications of artificial intelligenceen_US
dcterms.issued2025-02-01-
dc.identifier.scopus2-s2.0-85210530564-
dc.identifier.eissn1873-6769en_US
dc.identifier.artn109769en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3629b-
dc.identifier.SubFormID50524-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.