Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/113385
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Logistics and Maritime Studies | en_US |
dc.contributor | Department of Industrial and Systems Engineering | en_US |
dc.creator | Lei, D | en_US |
dc.creator | Xu, M | en_US |
dc.creator | Wang, S | en_US |
dc.date.accessioned | 2025-06-04T01:34:30Z | - |
dc.date.available | 2025-06-04T01:34:30Z | - |
dc.identifier.issn | 1566-2535 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/113385 | - |
dc.language.iso | en | en_US |
dc.publisher | Elsevier BV | en_US |
dc.subject | Individual trajectory | en_US |
dc.subject | Inter-modal attention | en_US |
dc.subject | Manifold feature fusion | en_US |
dc.subject | Multi-task prediction | en_US |
dc.subject | Travel mode estimation | en_US |
dc.title | A deep multimodal network for multi-task trajectory prediction | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 113 | en_US |
dc.identifier.doi | 10.1016/j.inffus.2024.102597 | en_US |
dcterms.abstract | Addressing the complexity of multi-task trajectory prediction, this study introduces a novel Deep Multimodal Network (DMN), which integrates a shared feature extractor and a multi-task prediction module with translational encoders to capture both intra-modal and inter-modal dependencies. Unlike traditional models that focus on single-task forecasting, our DMN efficiently and simultaneously predicts multiple trajectory outputs—locations, travel times, and transportation modes. Compared to baseline models including LSTM and Seq2Seq using a real-world dataset, the DMN demonstrates superior performance, reducing the location prediction error by 67% and the travel time error by 69%, while achieving an accuracy of 91. 44% in travel mode prediction. Statistical tests confirm the significance of these enhancements. Ablation studies further validate the critical role of modeling complex dependencies, highlighting the potential of DMN to advance intelligent and sustainable transportation systems. | en_US |
dcterms.accessRights | embargoed access | en_US |
dcterms.bibliographicCitation | Information fusion, Jan. 2025, v. 113, 102597 | en_US |
dcterms.isPartOf | Information fusion | en_US |
dcterms.issued | 2025-01 | - |
dc.identifier.scopus | 2-s2.0-85199949259 | - |
dc.identifier.eissn | 1872-6305 | en_US |
dc.identifier.artn | 102597 | en_US |
dc.description.validate | 202506 bcch | en_US |
dc.description.oa | Not applicable | en_US |
dc.identifier.FolderNumber | a3629b | - |
dc.identifier.SubFormID | 50523 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.pubStatus | Published | en_US |
dc.date.embargo | 2027-01-31 | en_US |
dc.description.oaCategory | Green (AAM) | en_US |
Appears in Collections: | Journal/Magazine Article |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.