Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113385
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorLei, Den_US
dc.creatorXu, Men_US
dc.creatorWang, Sen_US
dc.date.accessioned2025-06-04T01:34:30Z-
dc.date.available2025-06-04T01:34:30Z-
dc.identifier.issn1566-2535en_US
dc.identifier.urihttp://hdl.handle.net/10397/113385-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectIndividual trajectoryen_US
dc.subjectInter-modal attentionen_US
dc.subjectManifold feature fusionen_US
dc.subjectMulti-task predictionen_US
dc.subjectTravel mode estimationen_US
dc.titleA deep multimodal network for multi-task trajectory predictionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume113en_US
dc.identifier.doi10.1016/j.inffus.2024.102597en_US
dcterms.abstractAddressing the complexity of multi-task trajectory prediction, this study introduces a novel Deep Multimodal Network (DMN), which integrates a shared feature extractor and a multi-task prediction module with translational encoders to capture both intra-modal and inter-modal dependencies. Unlike traditional models that focus on single-task forecasting, our DMN efficiently and simultaneously predicts multiple trajectory outputs—locations, travel times, and transportation modes. Compared to baseline models including LSTM and Seq2Seq using a real-world dataset, the DMN demonstrates superior performance, reducing the location prediction error by 67% and the travel time error by 69%, while achieving an accuracy of 91. 44% in travel mode prediction. Statistical tests confirm the significance of these enhancements. Ablation studies further validate the critical role of modeling complex dependencies, highlighting the potential of DMN to advance intelligent and sustainable transportation systems.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInformation fusion, Jan. 2025, v. 113, 102597en_US
dcterms.isPartOfInformation fusionen_US
dcterms.issued2025-01-
dc.identifier.scopus2-s2.0-85199949259-
dc.identifier.eissn1872-6305en_US
dc.identifier.artn102597en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3629b-
dc.identifier.SubFormID50523-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.