Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113373
DC FieldValueLanguage
dc.contributorFaculty of Businessen_US
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorZhen, Len_US
dc.creatorWu, Jen_US
dc.creatorWang, Sen_US
dc.creatorHe, Xen_US
dc.creatorTian, Xen_US
dc.date.accessioned2025-06-04T01:34:23Z-
dc.date.available2025-06-04T01:34:23Z-
dc.identifier.issn2472-5854en_US
dc.identifier.urihttp://hdl.handle.net/10397/113373-
dc.language.isoenen_US
dc.publisherTaylor & Francis Inc.en_US
dc.subjectColumn generationen_US
dc.subjectCourier routingen_US
dc.subjectLast-mile logisticsen_US
dc.subjectOrder assignmenten_US
dc.subjectPlatform revenueen_US
dc.titleCourier routing for a new last-mile logistics serviceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage957en_US
dc.identifier.epage975en_US
dc.identifier.volume57en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1080/24725854.2024.2366295en_US
dcterms.abstractAs a new business mode for last-mile logistics services, some instant delivery platforms provide “help me buy” services mainly to satisfy urgent customer demands. Couriers travel to nearby stores, buy commodities requested by the customer, and quickly deliver them to the customer’s location. We investigate how to operate this type of platform to maximize profits. A two-stage stochastic programming model is proposed to determine whether to accept a customer’s order, how to assign accepted orders to couriers, and how to select stores where the commodities are purchased. The proposed model can be applied using a rolling horizon approach and account for the uncertain arrival of future orders in each epoch. Moreover, because the second-stage subproblem involves an integer programming model, a new primal decomposition algorithm is proposed to solve the two-stage model. Extensions are also explored so that our proposed methodology can be applied to more general and realistic platform operations. Numerical experiments based on real data are conducted to test the effectiveness of the proposed algorithm and to derive useful managerial insights for operators of help me buy services. This study indicates the necessity of applying the new decomposition to this new delivery model, considering future orders, and allowing platform collaboration, and determines the benefit of the stochastic solution. In addition, this study reveals the influences of the courier-to-order ratio; response time; distribution and radius of order, courier, and store circles; demand density; and decision frequency.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationIISE transactions, 2025, v. 57, no. 8, p. 957-975en_US
dcterms.isPartOfIISE transactionsen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-85199462214-
dc.identifier.eissn2472-5862en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3629a-
dc.identifier.SubFormID50511-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-07-25en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-07-25
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.