Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113372
Title: Ship sailing speed optimization considering dynamic meteorological conditions
Authors: Luo, X 
Yan, R 
Wang, S 
Issue Date: Oct-2024
Source: Transportation research. Part C, Emerging technologies, Oct. 2024, v. 167, 104827
Abstract: Sailing speed optimization is a cost-effective strategy to improve ship energy efficiency and a viable way to fulfill emission reduction requirements. This study develops a novel ship sailing speed optimization method that considers dynamic meteorological conditions. We first develop an artificial neural network model for vessel fuel consumption rate (FCR) prediction based on a fusion dataset of ship noon reports and public meteorological data. Then, based on the predicted FCRs, the method repeatedly formulates a multistage graph based on the most recent forecasts, and optimal speeds for the remaining voyage are obtained until the vessel reaches the destination port. The computational efficiency of the optimization process is enhanced by progressively removing nodes without connections to successor nodes, starting from the penultimate stage. We examine the proposed method on two 11-day voyages of a dry bulk carrier. Results show that the proposed method demonstrates significant reductions in fuel consumption by 5.35% compared with a constant sailing speed scheme and by 7.34% compared with a static speed optimization model. In addition, the proposed model achieves similar fuel savings to those achieved by speed optimization based on actual meteorological conditions, enabling shipping companies to optimize ship sailing speeds in the absence of actual meteorological conditions. The proposed method can be applied to various types of vessels due to its flexibility and adaptability, making it a valuable tool for the shipping industry to reduce greenhouse gas (GHG) emissions, thereby supporting the International Maritime Organization (IMO)’s goal of reaching net-zero GHG emissions by around 2050.
Keywords: Dynamic meteorological conditions
Multistage graph optimization
Ship energy efficiency
Ship fuel consumption prediction
Ship speed optimization
Publisher: Elsevier Ltd
Journal: Transportation research. Part C, Emerging technologies 
ISSN: 0968-090X
EISSN: 1879-2359
DOI: 10.1016/j.trc.2024.104827
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2026-10-31
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.