Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113371
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorLei, Den_US
dc.creatorXu, Men_US
dc.creatorWang, Sen_US
dc.date.accessioned2025-06-04T01:34:22Z-
dc.date.available2025-06-04T01:34:22Z-
dc.identifier.issn0968-090Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/113371-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectConditional diffusion modelen_US
dc.subjectInsufficient sensor coverageen_US
dc.subjectNetwork-wide estimationen_US
dc.subjectProbabilistic estimationen_US
dc.subjectSpatio-temporal estimatoren_US
dc.titleA conditional diffusion model for probabilistic estimation of traffic states at sensor-free locationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume166en_US
dc.identifier.doi10.1016/j.trc.2024.104798en_US
dcterms.abstractTransportation administrators and urban planners rely on accurate network-wide traffic state estimation to make well-informed decisions. However, due to insufficient sensor coverage, traffic state estimation at sensor-free locations (TSES) poses significant challenges for downstream network-wide traffic analysis. This is because direct observations are not available at these sensor-free locations. Most existing traffic state estimation (TSE) research focuses on inferring several unknown time points based on observed historical data using deterministic models. In contrast, TSES is to infer the entire unknown traffic time series of a given sensor-free node, thereby presenting high predictive difficulty, as we could not learn any historical traffic patterns locally. In this study, we introduce a novel probabilistic model — the conditional diffusion framework with spatio-temporal estimator (CDSTE) — to tackle the TSES problem. When dealing with TSES, deterministic models can only produce point value estimates, which may substantially deviate from the actual traffic states of sensor-free locations. To mitigate this, the proposed CDSTE integrates the conditional diffusion framework with cutting-edge spatio-temporal networks to extract the underlying dependencies in traffic states between sensor-free and sensor-equipped nodes. This integration enables reliable probabilistic traffic state estimations for sensor-free locations, which can be used to quantify the variability of estimations in TSES to support flexible and robust decision-making processes for traffic management and control. Extensive numerical experiments on real-world datasets demonstrate the superior performance of CDSTE for TSES over five widely-used baseline models.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTransportation research. Part C, Emerging technologies, Sept 2024, v. 166, 104798en_US
dcterms.isPartOfTransportation research. Part C, Emerging technologiesen_US
dcterms.issued2024-09-
dc.identifier.scopus2-s2.0-85200213140-
dc.identifier.eissn1879-2359en_US
dc.identifier.artn104798en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3629a-
dc.identifier.SubFormID50509-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-09-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-09-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.