Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113365
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorYang, Yen_US
dc.creatorHao, Xen_US
dc.creatorWang, Sen_US
dc.date.accessioned2025-06-03T01:20:25Z-
dc.date.available2025-06-03T01:20:25Z-
dc.identifier.issn0191-2615en_US
dc.identifier.urihttp://hdl.handle.net/10397/113365-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBranch-and-price-and-cuten_US
dc.subjectDrone scheduling problemen_US
dc.subjectShore-to-ship deliveryen_US
dc.subjectTime discretizationen_US
dc.titleThe drone scheduling problem in shore-to-ship delivery : a time discretization-based model with an exact solving approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume191en_US
dc.identifier.doi10.1016/j.trb.2024.103117en_US
dcterms.abstractAmid growing interest in the integration of drones into maritime logistics, this paper addresses the drone scheduling problem in shore-to-ship delivery (DSP-SSD), which is both significant and challenging. We introduce a mixed-integer programming model with time discretization that incorporates drone-related constraints, moving targets, and the need for multiple drone trips. While commercial solvers can handle this model in small-scale scenarios, we propose a tailored branch-and-price-and-cut (BPC) algorithm for larger and more complex cases. This algorithm integrates a drone-specific backward labeling algorithm, cutting planes, and acceleration methods to boost its effectiveness. Experiments show that the BPC algorithm substantially outperforms the commercial solvers in terms of solution quality and computational efficiency and that the inclusion of acceleration strategies in the algorithm enhances its performance. We also provide detailed sensitivity analyses of critical parameters of the model, such as the time discretization parameter and the number of ships, to gain insights into how our approach could be applied in real-world DSP-SSD operations.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTransportation research. Part B, Methodological, Jan. 2025, v. 191, 103117en_US
dcterms.isPartOfTransportation research. Part B, Methodologicalen_US
dcterms.issued2025-01-
dc.identifier.eissn1879-2367en_US
dc.identifier.artn103117en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3627-
dc.identifier.SubFormID50502-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.