Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113319
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorTan, W-
dc.creatorYuan, C-
dc.creatorXu, S-
dc.creatorXu, Y-
dc.creatorStocchino, A-
dc.date.accessioned2025-06-02T06:58:09Z-
dc.date.available2025-06-02T06:58:09Z-
dc.identifier.issn1070-6631-
dc.identifier.urihttp://hdl.handle.net/10397/113319-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.titleA Swin-Transformer-based deep-learning model for rolled-out predictions of regional wind wavesen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: 谈伟恺en_US
dc.description.otherinformationAuthor name used in this publication: 袁才昊en_US
dc.description.otherinformationAuthor name used in this publication: 徐宿东en_US
dc.description.otherinformationAuthor name used in this publication: 徐元en_US
dc.identifier.spage036625-01-
dc.identifier.epage036625-15-
dc.identifier.volume37-
dc.identifier.issue3-
dc.identifier.doi10.1063/5.0256654-
dcterms.abstractShort-term predictions of regional wind waves are crucial for coastal and ocean engineering. In this study, we introduce a novel Swin-Transformer-based model, named ST-RWP (Swin Transformer for Regional Wave Prediction), designed to leverage the spatiotemporal relationships of wind velocities and significant wave heights. The model considers inductive bias to capture both local and global dependencies via Convolution and Swin Transformer layers, enabling accurate short-term wave field predictions on unseen data. A rolled-out prediction scheme is employed to extend the forecast horizon efficiently. Trained on the reanalysis dataset offered by European Center for Medium-Range Weather Forecasts, ST-RWP demonstrates excellent performance in predicting wave fields with lead times of 6 and 12 h. However, the model's accuracy degrades when the lead time exceeds 24 h, primarily due to the limited spatial information available at boundary nodes and the low autocorrelation value for such large time span. The dataset exhibits strong spatial and temporal correlations, which are key to the model's success. Our findings indicate that ST-RWP offers an efficient tool for real-time wave field nowcasting, representing a significant advancement in the application of Transformer-based deep neural networks to wave prediction.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationPhysics of fluids, Mar. 2025, v. 37, no. 3, 036625, p. 036625-01 - 036625-15-
dcterms.isPartOfPhysics of fluids-
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-105000328398-
dc.identifier.eissn1089-7666-
dc.identifier.artn036625-
dc.description.validate202506 bcch-
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China (Grant No. 52301316); the National Key Research and Development Program of China (Grant No. 2023YFB2603803)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-03-31en_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-03-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.