Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113295
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorAn, Ren_US
dc.creatorSun, Men_US
dc.creatorDong, Yen_US
dc.creatorGuo, Len_US
dc.creatorJia, Len_US
dc.creatorLei, Xen_US
dc.date.accessioned2025-06-02T06:57:36Z-
dc.date.available2025-06-02T06:57:36Z-
dc.identifier.issn1545-2255en_US
dc.identifier.urihttp://hdl.handle.net/10397/113295-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rightsCopyright © 2025 Ru An et al. Structural Control and Health Monitoring published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication An, R., Sun, M., Dong, Y., Guo, L., Jia, L., & Lei, X. (2025). Active Learning–Enhanced Ensemble Method for Spatiotemporal Correlation Modeling of Neighboring Bridge Behaviors to Girder Overturning. Structural Control and Health Monitoring, 2025(1), 6047080 is available at https://doi.org/10.1155/stc/6047080.en_US
dc.subjectActive learningen_US
dc.subjectEnsemble learningen_US
dc.subjectGirder overturningen_US
dc.subjectNeighboring bridgesen_US
dc.subjectStructural health monitoringen_US
dc.titleActive learning–enhanced ensemble method for spatiotemporal correlation modeling of neighboring bridge behaviors to girder overturningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume2025en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1155/stc/6047080en_US
dcterms.abstractStructural health monitoring (SHM) systems are widely deployed in transportation networks, yet traditional methods often focus on individual bridges, overlooking interdependencies between neighboring structures. This study proposes an active learning–enhanced ensemble learning model to predict the tilt behavior of adjacent bridges by leveraging critical response data from multiple bridges. The ensemble model integrates gradient boosting, random forest, and Gaussian process regressors, providing both predictive means and uncertainty quantification. Active learning iteratively selects the most informative samples, improving model efficiency and reducing data requirements. The model accurately predicts vertical displacement and tilt using responses from neighboring bridges, effectively capturing spatiotemporal correlations and dynamic interactions. Active learning achieves comparable accuracy with just 50% of traditional training samples, demonstrating its efficiency. The results reveal structural interdependencies influenced by stiffness and load distribution variations. The successful prediction of tilt behavior underscores the model’s potential for real-time SHM, early overturning warnings, and enhanced bridge safety.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationStructural control and health monitoring, 12 May 2025, v. 2025, no. 1, 6047080en_US
dcterms.isPartOfStructural control and health monitoringen_US
dcterms.issued2025-05-12-
dc.identifier.scopus2-s2.0-105005183628-
dc.identifier.eissn1545-2263en_US
dc.identifier.artn6047080en_US
dc.description.validate202506 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextthe National Key R&D Program of China; Shenzhen Science and Technology Program; Natural Science Foundation of Shanghai; Shanghai Research Institute of Building Sciences Co. Ltd. ; the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
An_Active_Learning-enhanced_Ensemble.pdf2.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.