Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113126
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorRianto, Sen_US
dc.creatorZeng, Yen_US
dc.creatorHuang, Xen_US
dc.creatorLu, Xen_US
dc.date.accessioned2025-05-20T05:29:37Z-
dc.date.available2025-05-20T05:29:37Z-
dc.identifier.issn0379-7112en_US
dc.identifier.urihttp://hdl.handle.net/10397/113126-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBuilding fire simulationen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjectFire safety engineeringen_US
dc.subjectGenerative AIen_US
dc.subjectIntelligent designen_US
dc.titleGenerative artificial intelligence for fire scenario analysis in complex building design layoutsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume155en_US
dc.identifier.doi10.1016/j.firesaf.2025.104427en_US
dcterms.abstractPerformance-based fire safety design requires thoroughly evaluating building fire scenarios to ensure comprehensive fire safety. However, conventional Computational Fluid Dynamics (CFD) fire simulations are computationally intensive and time-consuming, limiting the number of scenarios that can be practically analyzed. This study addresses these challenges by using generative artificial intelligence (AI) to predict fire scenes in realistic multi-room building layouts, characterized by complex shapes and intricate wall partitions. Three generative AI models for image generation are employed for this purpose: GAN-based pix2pix and pix2pixHD, as well as the diffusion model. These models were trained on an extensive dataset of CFD fire simulations to generate near-ceiling smoke movement and temperature distribution outcomes. When tested on new unseen building layouts, these models demonstrated remarkable accuracy and provided near real-time assessments. The diffusion model achieved the highest accuracy (>94 %) while requiring the more computational time. The high performance of these models highlights the potential of using generative AI to enhance fire safety engineering by enabling faster and more comprehensive fire risk assessments.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationFire safety journal, Sept 2025, v. 155, 104427en_US
dcterms.isPartOfFire safety journalen_US
dcterms.issued2025-09-
dc.identifier.eissn1873-7226en_US
dc.identifier.artn104427en_US
dc.description.validate202505 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3603, a3639-
dc.identifier.SubFormID50445, 50547-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China (No. 52238011)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.