Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113121
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorZuo, ZQen_US
dc.creatorZhang, TYen_US
dc.creatorHuang, Xen_US
dc.creatorCen, XTen_US
dc.creatorLu, Xen_US
dc.creatorLiu, Ten_US
dc.creatorShon, HKen_US
dc.creatorZheng, Men_US
dc.date.accessioned2025-05-19T00:53:19Z-
dc.date.available2025-05-19T00:53:19Z-
dc.identifier.urihttp://hdl.handle.net/10397/113121-
dc.language.isoenen_US
dc.rights© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Zuo, Z., Zhang, T., Huang, X., Cen, X., Lu, X., Liu, T., Shon, H. K., & Zheng, M. (2024). A hybrid oxidation approach for converting high-strength urine ammonia into ammonium nitrate. Water Research X, 25, 100277 is available at https://dx.doi.org/10.1016/j.wroa.2024.100277.en_US
dc.subjectUrineen_US
dc.subjectFertilizeren_US
dc.subjectPartial nitritationen_US
dc.subjectChemical oxidationen_US
dc.subjectNutrient recoveryen_US
dc.subjectCircular economyen_US
dc.titleA hybrid oxidation approach for converting high-strength urine ammonia into ammonium nitrateen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume25en_US
dc.identifier.doi10.1016/j.wroa.2024.100277en_US
dcterms.abstractNutrient resources contained in human urine have great potential to alleviate global agricultural fertilizer demand. Microbial nitrification is a recognized strategy for stabilizing urine ammonia into ammonium nitrate, a common fertilizer worldwide, but faces a core bottleneck of process instability due to microbial inhibition. This study reports a new approach by developing a hybrid oxidation process involving three stages-microbial ammonia oxidation, chemical nitrite oxidation and microbial nitrite oxidation. Candidatus Nitrosoglobus, a gamma-proteobacterial ammonia oxidizer highly tolerant to free nitrous acid, was introduced in the first stage to oxidize half of the total ammonia in the influent (8 g NH4+-N/L) to nitrite. The nitrite was then chemically oxidized by using hydrogen peroxide via a rapid chemical reaction to form nitrate. The third stage, microbial nitrite oxidation, was employed to ensure the complete removal of residual nitrite following chemical oxidation. The overall concept demonstrated in this work showcased the robust performance of the hybrid system. Moreover, the system also had a dual advantage in achieving antimicrobial ability in the first and second stages, making treated urine a safe fertilizer.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationWater research, 1 Dec. 2024, v. 25, 100277en_US
dcterms.isPartOfWater research : Xen_US
dcterms.issued2024-12-01-
dc.identifier.isiWOS:001356363600001-
dc.identifier.eissn2589-9147en_US
dc.identifier.artn100277en_US
dc.description.validate202505 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextAustralian Research Council (ARC) DECRA Fellowship; Industry Fellowship; ARC Research Hub for Nutrients in a Circular Economy (NiCE)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2589914724000677-main.pdf3.28 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.