Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/113062
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Physics | en_US |
dc.contributor | Photonics Research Institute | en_US |
dc.contributor | Research Institute for Advanced Manufacturing | en_US |
dc.contributor | Mainland Development Office | en_US |
dc.creator | Alam, TI | en_US |
dc.creator | Hani, SU | en_US |
dc.creator | Guo, Z | en_US |
dc.creator | Ahmed, S | en_US |
dc.creator | Saleque, AM | en_US |
dc.creator | Ivan, MNAS | en_US |
dc.creator | Saha, S | en_US |
dc.creator | Tsang, YH | en_US |
dc.date.accessioned | 2025-05-19T00:52:29Z | - |
dc.date.available | 2025-05-19T00:52:29Z | - |
dc.identifier.issn | 1613-6810 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/113062 | - |
dc.language.iso | en | en_US |
dc.publisher | Wiley-VCH | en_US |
dc.rights | ©2025 The Author(s). Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. | en_US |
dc.rights | The following publication Alam, T. I., Hani, S. U., Guo, Z., Ahmed, S., Saleque, A. M., Ivan, M. N. A. S., ... & Tsang, Y. H. (2025). Synergistically Engineered All Van der Waals GaS–WSe2 Photodiodes: Approaching Near‐Unity Polychromatic Linearity for Multifunctional Optoelectronics. Small, 21(18), 2410841 is available at https://doi.org/10.1002/smll.202410841. | en_US |
dc.subject | All van der Waals | en_US |
dc.subject | Broadband photodiode | en_US |
dc.subject | Fermi-level pinning | en_US |
dc.subject | GaS–WSe<sub>2</sub> heterostructure | en_US |
dc.subject | Photovoltaic | en_US |
dc.subject | Type-II heterojunction | en_US |
dc.subject | Van der Waals contact | en_US |
dc.title | Synergistically engineered all van der Waals GaS–WSe₂ photodiodes : approaching near-unity polychromatic linearity for multifunctional optoelectronics | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 21 | en_US |
dc.identifier.issue | 18 | en_US |
dc.identifier.doi | 10.1002/smll.202410841 | en_US |
dcterms.abstract | Van der Waals (vdW) heterojunctions represent a significant frontier in post-Moore era optoelectronics, especially in optimizing photosensor performance through multivariate approaches. Here synergistic engineering of GaS–WSe2 all-vdW photodiodes is investigated, which exhibit broadband detection (275–1064 nm), multispectral unity approaching linearity, alongside a substantial linear dynamic range (LDR) of 106.78 dB. Additionally, the photodiodes achieve a remarkable on/off ratio of 105 and rapid response edges of 545/471 µs under a 405 nm pulsed source, exhibiting ultralow light detection capabilities (dark currents ∼fA), culminating in a peak responsivity of 376.78 mA W−1 and a detectivity of 4.12 × 10¹¹ Jones under 450 nm illumination, complemented by an external quantum efficiency (EQE) of 30% and a fill factor of ≈0.33. Based on the analysis of multiple all-vdW devices, the importance of Fermi-level pinning free metal–2D interface engineering that enables effective modulation of the Schottky barrier height via vdW metal contacts is highlighted and meticulous thickness-engineered layers in developing a robust depletion region within the type-II GaS–WSe2 heterojunction are employed, ultimately achieving a favorable balance among photocarrier generation recombination, separation, transport, and extraction. This comprehensive investigation sets the stage for future developments in critically engineered next-generation vdW optoelectronic devices. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Small, 5 May 2025, v. 21, no. 18, 2410841 | en_US |
dcterms.isPartOf | Small | en_US |
dcterms.issued | 2025-05-05 | - |
dc.identifier.scopus | 2-s2.0-105000640403 | - |
dc.identifier.eissn | 1613-6829 | en_US |
dc.identifier.artn | 2410841 | en_US |
dc.description.validate | 202505 bcfc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_TA | - |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | Photonic Research Institute (PRI), (Project No. 1-CD6V); Research Institute for Advanced Manufacturing (RIAM) (Project Nos. 1-CD8V and 1-CDK6), the Hong Kong Polytechnic University, Hong Kong, China; Science, Technology and Innovation Commission of Shenzhen Municipality (Project Nos. JCYJ20241202130542054 and JCYJ20210324141206017), the Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China. | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.TA | Wiley (2025) | en_US |
dc.description.oaCategory | TA | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Alam_Synergistically_Engineered_All.pdf | 2.89 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.