Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113051
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorFares, Aen_US
dc.creatorZayed, Ten_US
dc.creatorFaris, Nen_US
dc.creatorYussif, AMen_US
dc.creatorAbdelkhalek, Sen_US
dc.date.accessioned2025-05-19T00:52:23Z-
dc.date.available2025-05-19T00:52:23Z-
dc.identifier.issn0926-5805en_US
dc.identifier.urihttp://hdl.handle.net/10397/113051-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).en_US
dc.rightsThe following publication Fares, A., Zayed, T., Faris, N., Yussif, A. M., & Abdelkhalek, S. (2025). Pavement thickness evaluation using GPR and fuzzy logic. Automation in Construction, 175, 106236 is available at https://doi.org/10.1016/j.autcon.2025.106236.en_US
dc.subjectAsphalten_US
dc.subjectClusteringen_US
dc.subjectCondition assessmenten_US
dc.subjectFuzzy logicen_US
dc.subjectGround penetrating radaren_US
dc.subjectPavementen_US
dc.subjectPavement evaluationen_US
dc.subjectThicknessen_US
dc.titlePavement thickness evaluation using GPR and fuzzy logicen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume175en_US
dc.identifier.doi10.1016/j.autcon.2025.106236en_US
dcterms.abstractAccurate pavement thickness evaluation is essential, as insufficient thickness can lead to surface distress and structural failures. However, pavement thickness is often overlooked in condition assessment models. While ground penetrating radar (GPR) offers a useful non-destructive solution, existing models are typically limited to surface layers and require significant user input. To address these challenges, this paper developed an integrated layer interface detection system and a Thickness Condition Index (TCI) using GPR and fuzzy logic. The TCI is designed to support the incorporation of thickness evaluation into pavement condition models. The developed models were tested on twelve diverse road sections from the Long-Term Pavement Performance (LTPP) database. The developed TCI enables informed decisions, facilitating efficient pavement maintenance. While the models demonstrated consistent performance, key limitations include addressing low-thickness layers and low dielectric constant contrast between layers. Future research should explore signal processing techniques, such as decomposition methods, to enhance models robustness.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAutomation in construction, July 2025, v. 175, 106236en_US
dcterms.isPartOfAutomation in constructionen_US
dcterms.issued2025-07-
dc.identifier.scopus2-s2.0-105003768731-
dc.identifier.eissn1872-7891en_US
dc.identifier.artn106236en_US
dc.description.validate202505 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0926580525002766-main.pdf9.32 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.