Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113049
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.contributorPhotonics Research Instituteen_US
dc.creatorMa, Ren_US
dc.creatorZou, Ben_US
dc.creatorHai, Yen_US
dc.creatorLuo, Yen_US
dc.creatorLuo, Zen_US
dc.creatorWu, Jen_US
dc.creatorYan, Hen_US
dc.creatorLi, Gen_US
dc.date.accessioned2025-05-19T00:52:22Z-
dc.date.available2025-05-19T00:52:22Z-
dc.identifier.issn0935-9648en_US
dc.identifier.urihttp://hdl.handle.net/10397/113049-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2025 The Author(s). Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication R. Ma, B. Zou, Y. Hai, Y. Luo, Z. Luo, J. Wu, H. Yan, G. Li, Triplet State Suppression for Energy Loss Reduction in 20% Nonhalogenated Solvent Processed Binary Organic Solar Cells. Adv. Mater. 2025, 37(17), 2500861 is available at https://doi.org/10.1002/adma.202500861.en_US
dc.subjectEnergy lossen_US
dc.subjectNonhalogenated solventen_US
dc.subjectOrganic solar cellen_US
dc.subjectPower conversion efficiencyen_US
dc.subjectTriplet state suppressionen_US
dc.titleTriplet state suppression for energy loss reduction in 20% nonhalogenated solvent processed binary organic solar cellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume37en_US
dc.identifier.issue17en_US
dc.identifier.doi10.1002/adma.202500861en_US
dcterms.abstractBoosting power conversion efficiency (PCE) of organic solar cells (OSCs) has been restricted by its undesirably high energy loss, especially for those nonhalogenated solvent-processed ones. Here,a dichloro-methoxylated terminal group in an asymmetric small molecular acceptor design, which realizes a significantly reduced non-radiative energy loss (0.179 eV) compared to its symmetric counterpart (0.202 eV), is reported. Consequently, the device efficiency is improved by up to 20% for PM6:BTP-eC9-4ClO, without sacrificing the photon harvest or charge transport ability of the control system PM6:BTP-eC9. Further characterizations reveal the asymmetric acceptor BTP-eC9-4ClO's blend film demonstrates a suppressed triplet state formation, enabled by an enhanced electron delocalization. In addition, the asymmetric BTP-eC9-4ClO is found to be thermally stabler than BTP-eC9, and thus providing an improved device stability, whose T80 value reaches > 7800 h under 80 °C anneal in N2 via linear extrapolation. This work represents state-of-the-art device performance for nonhalogenated solvent-processed binary OSCs with certified results (19.45%).en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced materials, 28 Apr. 2025, v. 37, no. 17, 2500861en_US
dcterms.isPartOfAdvanced materialsen_US
dcterms.issued2025-04-28-
dc.identifier.scopus2-s2.0-105004027992-
dc.identifier.pmid40091429-
dc.identifier.eissn1521-4095en_US
dc.identifier.artn2500861en_US
dc.description.validate202505 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextShenzhen Science and Technology Innovation Commission; Hong Kong Polytechnic University: Sir Sze-yuen Chung Endowed Professorship Fund; Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devicesen_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ma_Triplet_State_Suppression.pdf2.4 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

34
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

35
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.