Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113024
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorDong, C-
dc.creatorChen, L-
dc.creatorLin, W-
dc.creatorLi, Z-
dc.creatorWei, L-
dc.creatorPeng, C-
dc.creatorLiu, H-
dc.creatorQi, R-
dc.creatorLu, L-
dc.creatorZhang, L-
dc.date.accessioned2025-05-19T00:51:52Z-
dc.date.available2025-05-19T00:51:52Z-
dc.identifier.urihttp://hdl.handle.net/10397/113024-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rights© 2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.en_US
dc.rightsThe following publication Dong C, Chen L, Lin W,et al. Nature‐inspired 3D hierarchical carbonnanotube matrices enable extraordinary solarsteam generation. Carbon Energy. 2025;7:e655 is available at https://doi.org/10.1002/cey2.655.en_US
dc.subjectFermi levelen_US
dc.subjectInterfacial solar evaporationen_US
dc.subjectNitrogen-doped carbon nanotubesen_US
dc.subjectPhotothermal conversionen_US
dc.titleNature-inspired 3D hierarchical carbon nanotube matrices enable extraordinary solar steam generationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume7-
dc.identifier.issue3-
dc.identifier.doi10.1002/cey2.655-
dcterms.abstractInterfacial solar evaporation, which captures solar energy and localizes the absorbed heat for water evaporation, is considered a promising technology for seawater desalination and solar energy conversion. However, it is currently limited by its low photothermal conversion efficiency, salt accumulation, and poor reliability. Herein, inspired by human intestinal villi structure, we design and fabricate a novel intestinal villi-like nitrogen-doped carbon nanotubes solar steam generator (N-CNTs SSG) consisting of three-dimensional (3D) hierarchical carbon nanotube matrices for ultrahigh solar evaporation efficiency. The 3D matrices with radial direction nitrogen-doped carbon nanotube clusters achieve ultrahigh surface area, photothermal efficiency, and hydrophilicity, which significantly intensifies the whole interfacial solar evaporation process. The new solar evaporation efficiency reaches as high as 96.8%. Furthermore, our ab initio molecular dynamics simulation reveals that N-doped carbon nanotubes exhibit a greater number of electronic states in close proximity to the Fermi level when compared to pristine carbon nanotubes. The outstanding absorptivity in the full solar spectrum and high solar altitude angles of the 3D hierarchical carbon nanotube matrices offer great potential to enable ultrahigh photothermal conversion under all-day and all-season circumstances.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCarbon energy, Mar. 2025, v. 7, no. 3, e655-
dcterms.isPartOfCarbon energy-
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-85214806332-
dc.identifier.eissn2637-9368-
dc.identifier.artne655-
dc.description.validate202505 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China, Grant/Award Numbers: 52476072,51936005; Young Talent Support Project of Guangzhou Association for Science and Technologyen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dong_Nature‐inspired_Hierarchical_Carbon.pdf3.9 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.