Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112883
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.creatorQian, Len_US
dc.creatorZhang, Jen_US
dc.creatorYang, Wen_US
dc.creatorWang, Yen_US
dc.creatorChan, Ken_US
dc.creatorYang, XSen_US
dc.date.accessioned2025-05-09T06:14:40Z-
dc.date.available2025-05-09T06:14:40Z-
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://hdl.handle.net/10397/112883-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsCopyright © 2025 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Qian, L., Zhang, J., Yang, W., Wang, Y., Chan, K., & Yang, X. S. (2025). Maintaining Grain Boundary Segregation-Induced Strengthening Effect in Extremely Fine Nanograined Metals. Nano Letters, 25(13), 5493-5501 is available at https://doi.org/10.1021/acs.nanolett.5c01032.en_US
dc.subjectAmorphous grain boundaryen_US
dc.subjectDeformation mechanismen_US
dc.subjectExtremely fine grain sizeen_US
dc.subjectGrain boundary segregationen_US
dc.subjectStrengthening effecten_US
dc.titleMaintaining grain boundary segregation-induced strengthening effect in extremely fine nanograined metalsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5493en_US
dc.identifier.epage5501en_US
dc.identifier.volume25en_US
dc.identifier.issue13en_US
dc.identifier.doi10.1021/acs.nanolett.5c01032en_US
dcterms.abstractReinforcing grain boundaries through solute segregation is a promising strategy to strengthen nanograined metals. However, maintaining strengthening in extremely fine nanograined metals poses challenges due to grain size reduction and grain boundary structural changes from excessive segregation. This study employs hybrid Monte Carlo/Molecular Dynamics simulations to investigate the interplay between solute concentration, grain boundary structure, deformation mechanism, and strength in Zr-segregated nanograined Cu. Results exhibit significant strength enhancement by optimizing segregation, extending the strengthening effect to a grain size as small as 3.75 nm. Continuous Zr segregation induces a progressive transition from original grain boundaries to segregated and ultimately amorphous grain boundaries. Amorphization alters the dominant deformation mechanism from grain boundary migration to homogeneous shear-transformation-zone activation, fostering and optimizing the strengthening effect in extremely fine nanograined Cu. These findings inspire a novel approach of segregation-induced grain boundary amorphization to leverage strong boundaries and extremely fine nanograins for strengthening nanograined metals.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano letters, 2 Apr. 2025, v. 25, no. 13, p. 5493-5501en_US
dcterms.isPartOfNano lettersen_US
dcterms.issued2025-04-02-
dc.identifier.scopus2-s2.0-105000719958-
dc.identifier.pmid40123097-
dc.identifier.eissn1530-6992en_US
dc.description.validate202505 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyU grants; Fundamental Research Program of Shenzhen Science and Technology Innovation Commissionen_US
dc.description.pubStatusPublisheden_US
dc.description.TAACS (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qian_Maintaining_Grain_Boundary.pdf8.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

4
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.