Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112850
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorCui, X-
dc.creatorLi, S-
dc.creatorZhang, L-
dc.creatorPeng, L-
dc.creatorGuo, L-
dc.creatorCao, X-
dc.creatorChen, X-
dc.creatorYin, H-
dc.creatorShen, M-
dc.date.accessioned2025-05-09T06:12:41Z-
dc.date.available2025-05-09T06:12:41Z-
dc.identifier.urihttp://hdl.handle.net/10397/112850-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rightsCopyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Cui, X., Li, S., Zhang, L., Peng, L., Guo, L., Cao, X., Chen, X., Yin, H., & Shen, M. (2025). Integrated Extraction of Root Diameter and Location in Ground-Penetrating Radar Images via CycleGAN-Guided Multi-Task Neural Network. Forests, 16(1), 110 is available at' https://doi.org/10.3390/f16010110.en_US
dc.subjectDeep learningen_US
dc.subjectGround-penetrating radaren_US
dc.subjectRoot diameteren_US
dc.subjectRoot locationen_US
dc.titleIntegrated extraction of root diameter and location in ground-penetrating radar images via CycleGAN-guided multi-task neural networken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume16-
dc.identifier.issue1-
dc.identifier.doi10.3390/f16010110-
dcterms.abstractThe diameter of roots is pivotal for studying subsurface root structure geometry. Yet, directly obtaining these parameters is challenging due their hidden nature. Ground-penetrating radar (GPR) offers a reproducible, nondestructive method for root detection, but estimating diameter from B-Scan images remains challenging. To address this, we developed the CycleGAN-guided multi-task neural network (CMT-Net). It comprises two subnetworks, YOLOv4-Hyperbolic Position and Diameter (YOLOv4-HPD) and CycleGAN. The YOLOv4-HPD is obtained by adding a regression header for predicting root diameter to YOLOv4-Hyperbola, which achieves the ability to simultaneously accurately locate root objects and estimate root diameter. The CycleGAN is used to solve the problem of the lack of a real root diameter training dataset for the YOLOv4-HPD model by migrating field-measured data domains to simulated data without altering root diameter information. We used simulated and field data to evaluate the model, showing its effectiveness in estimating root diameter. This study marks the first construction of a deep learning model for fully automatic root location and diameter extraction from GPR images, achieving an “Image Input–Parameter Output” end-to-end pattern. The model’s validation across various dataset scales opens the way for estimating other root attributes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationForests, Jan. 2025, v. 16, no. 1, 110-
dcterms.isPartOfForests-
dcterms.issued2025-01-
dc.identifier.scopus2-s2.0-85216019740-
dc.identifier.eissn1999-4907-
dc.identifier.artn110-
dc.description.validate202505 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China, grant number 42271329en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
forests-16-00110-v2.pdf14.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.