Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112705
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorOuyang, P-
dc.creatorGu, M-
dc.creatorRao, P-
dc.date.accessioned2025-04-28T07:53:35Z-
dc.date.available2025-04-28T07:53:35Z-
dc.identifier.issn1674-7755-
dc.identifier.urihttp://hdl.handle.net/10397/112705-
dc.language.isoenen_US
dc.publisher科学出版社 (Kexue Chubanshe,Science Press)en_US
dc.rights© 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Ouyang, P., Gu, M., & Rao, P. (2025). Stimulation characteristics of natural reservoir system under high-voltage electropulse-assisted fluid injection. Journal of Rock Mechanics and Geotechnical Engineering, 17(3), 1738-1756 is available at https://doi.org/10.1016/j.jrmge.2024.08.017.en_US
dc.subjectFluid injectionen_US
dc.subjectHigh-voltage electropulseen_US
dc.subjectReservoir stimulationen_US
dc.subjectRock fracturingen_US
dc.subjectTensile-shear mixed damageen_US
dc.titleStimulation characteristics of natural reservoir system under high-voltage electropulse-assisted fluid injectionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1738-
dc.identifier.epage1756-
dc.identifier.volume17-
dc.identifier.issue3-
dc.identifier.doi10.1016/j.jrmge.2024.08.017-
dcterms.abstractThis study elucidates the findings of a computational investigation into the stimulation characteristics of natural reservoir systems enhanced by high-voltage electropulse-assisted fluid injection. The presented methodology delineates the comprehensive rock-fracturing process induced by electropulse and subsequent fluid injection, encompassing the discharge circuit, plasma channel formation, shockwave propagation, and hydro-mechanical response. A hydromechanical model incorporating an anisotropic plastic damage constitutive law, discrete fracture networks, and heterogeneous distribution is developed to represent the natural reservoir system. The results demonstrate that high-voltage electropulse effectively generates intricate fracture networks, significantly enhances the hydraulic properties of reservoir systems, and mitigates the adverse impact of ground stress on fracturing. The stimulation-enhancing effect of electropulse is observed to intensify with increasing discharge voltage, with enhancements of 118.0%, 139.5%, and 169.0% corresponding to discharge voltages of 20 kV, 40 kV, and 60 kV, respectively. Additionally, a high-voltage electropulse with an initial voltage of U0 = 80 kV and capacitance C = 5 μF has been shown to augment the efficiency of injection activation to approximately 201.1% compared to scenarios without electropulse. Under the influence of high-voltage electropulse, the fluid pressure distribution diverges from the conventional single direction of maximum stress, extending over larger areas. These innovative methods and findings hold potential implications for optimizing reservoir stimulation in geo-energy engineering.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of rock mechanics and geotechnical engineering, Mar. 2025, v. 17, no. 3, p. 1738-1756-
dcterms.isPartOfJournal of rock mechanics and geotechnical engineering-
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-85215990170-
dc.identifier.eissn2589-0417-
dc.description.validate202504 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Nature Science Foundation of China (Grant Nos. 42077435 and 42377171)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S1674775524004074-main.pdf7.47 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.