Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/112667
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Land Surveying and Geo-Informatics | en_US |
dc.creator | Mahmoud, M | en_US |
dc.creator | Li, Y | en_US |
dc.creator | Adham, M | en_US |
dc.creator | Chen, W | en_US |
dc.date.accessioned | 2025-04-25T02:48:27Z | - |
dc.date.available | 2025-04-25T02:48:27Z | - |
dc.identifier.issn | 0926-5805 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/112667 | - |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | © 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). | en_US |
dc.rights | The following publication Mahmoud, M., LI, Y., Adham, M., & CHEN, W. (2025). Automated material-aware BIM generation using deep learning for Comprehensive Indoor Element Reconstruction. Automation in Construction, 175, 106196 is available at https://doi.org/10.1016/j.autcon.2025.106196. | en_US |
dc.subject | 3D reconstruction | en_US |
dc.subject | Building information modeling (BIM) | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Material classification | en_US |
dc.subject | Point clouds | en_US |
dc.subject | Scan-to-BIM | en_US |
dc.title | Automated material-aware bim generation using deep learning for comprehensive indoor element reconstruction | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 175 | en_US |
dc.identifier.doi | 10.1016/j.autcon.2025.106196 | en_US |
dcterms.abstract | Automating 3D reconstruction of indoor environments is essential for scene understanding in Building Information Modeling (BIM). This paper addresses the challenge of integrating geometric and material attributes in scan-to-BIM processes. A deep learning-based framework is developed to automatically extract and integrate geometric and material attributes from point clouds, incorporating an enhanced instance segmentation network, a material classification model, and an automated BIM integration workflow for accurate indoor modeling. The proposed framework reconstructs accurate 3D BIM models of space-forming and space-occupying elements while preserving key attributes. Experimental results show significant improvements in instance segmentation accuracy, with reconstructed 3D BIM models achieving over 98 % correctness and completeness, while the material classification model attains a point-based weighted F1−score of 0.973 and an object-based accuracy of 94.70 %. These findings advance automated BIM generation, enhancing building planning, asset management, and sustainable design while inspiring further developments in scan-to-BIM automation. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Automation in construction, July 2025, v. 175, 106196 | en_US |
dcterms.isPartOf | Automation in construction | en_US |
dcterms.issued | 2025-07 | - |
dc.identifier.scopus | 2-s2.0-105002374984 | - |
dc.identifier.eissn | 1872-7891 | en_US |
dc.identifier.artn | 106196 | en_US |
dc.description.validate | 202504 bcwc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_TA | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | Hong Kong Polytechnic University | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.TA | Elsevier (2025) | en_US |
dc.description.oaCategory | TA | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0926580525002365-main.pdf | 14.76 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.