Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112667
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorMahmoud, Men_US
dc.creatorLi, Yen_US
dc.creatorAdham, Men_US
dc.creatorChen, Wen_US
dc.date.accessioned2025-04-25T02:48:27Z-
dc.date.available2025-04-25T02:48:27Z-
dc.identifier.issn0926-5805en_US
dc.identifier.urihttp://hdl.handle.net/10397/112667-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).en_US
dc.rightsThe following publication Mahmoud, M., LI, Y., Adham, M., & CHEN, W. (2025). Automated material-aware BIM generation using deep learning for Comprehensive Indoor Element Reconstruction. Automation in Construction, 175, 106196 is available at https://doi.org/10.1016/j.autcon.2025.106196.en_US
dc.subject3D reconstructionen_US
dc.subjectBuilding information modeling (BIM)en_US
dc.subjectDeep learningen_US
dc.subjectMaterial classificationen_US
dc.subjectPoint cloudsen_US
dc.subjectScan-to-BIMen_US
dc.titleAutomated material-aware bim generation using deep learning for comprehensive indoor element reconstructionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume175en_US
dc.identifier.doi10.1016/j.autcon.2025.106196en_US
dcterms.abstractAutomating 3D reconstruction of indoor environments is essential for scene understanding in Building Information Modeling (BIM). This paper addresses the challenge of integrating geometric and material attributes in scan-to-BIM processes. A deep learning-based framework is developed to automatically extract and integrate geometric and material attributes from point clouds, incorporating an enhanced instance segmentation network, a material classification model, and an automated BIM integration workflow for accurate indoor modeling. The proposed framework reconstructs accurate 3D BIM models of space-forming and space-occupying elements while preserving key attributes. Experimental results show significant improvements in instance segmentation accuracy, with reconstructed 3D BIM models achieving over 98 % correctness and completeness, while the material classification model attains a point-based weighted F1−score of 0.973 and an object-based accuracy of 94.70 %. These findings advance automated BIM generation, enhancing building planning, asset management, and sustainable design while inspiring further developments in scan-to-BIM automation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAutomation in construction, July 2025, v. 175, 106196en_US
dcterms.isPartOfAutomation in constructionen_US
dcterms.issued2025-07-
dc.identifier.scopus2-s2.0-105002374984-
dc.identifier.eissn1872-7891en_US
dc.identifier.artn106196en_US
dc.description.validate202504 bcwcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0926580525002365-main.pdf14.76 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.