Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112659
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLi, Zen_US
dc.creatorZheng, Yen_US
dc.creatorZu, Wen_US
dc.creatorDong, Len_US
dc.creatorLee, LYSen_US
dc.date.accessioned2025-04-25T02:48:23Z-
dc.date.available2025-04-25T02:48:23Z-
dc.identifier.urihttp://hdl.handle.net/10397/112659-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2024 The Author(s). Advanced Science published by Wiley-VCHGmbH. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution andreproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Z. Li, Y. Zheng, W. Zu, L. Dong, L. Y. S. Lee, Molybdate-Modified NiOOH for Efficient Methanol-Assisted Seawater Electrolysis. Adv. Sci. 2025, 12(14), 2410911 is available at https://doi.org/10.1002/advs.202410911.en_US
dc.subjectAnti-corrosionen_US
dc.subjectDirect seawater electrolysisen_US
dc.subjectMethanol electrooxidationen_US
dc.subjectMolybdate modulationen_US
dc.subjectNon-electrochemical processen_US
dc.titleMolybdate-modified NiOOH for efficient methanol-assisted seawater electrolysisen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume12en_US
dc.identifier.issue14en_US
dc.identifier.doi10.1002/advs.202410911en_US
dcterms.abstractSeawater electrolysis holds great promise for sustainable, green hydrogen production but faces challenges of high overpotentials and competing chlorine evolution reaction (CER). Replacing the oxygen evolution reaction with the methanol oxidation reaction (MOR) presents a compelling alternative due to its lower anodic potential which mitigates the risk of CER. While NiOOH is known for its MOR activity, its performance is limited by sluggish non-electrochemical kinetics and Cl-induced degradation. Herein, a MoO42−-modified NiOOH electrocatalyst is reported that significantly enhances MOR-assisted seawater splitting efficiency. In situ leached MoO42− from the heterojunction optimizes methanol adsorption and facilitates proton migration, thereby accelerating the non-electrochemical steps in MOR. Additionally, the adsorbed MoO42− effectively repels Cl−, protecting the electrodes from Cl−-induced corrosion. The MOR-assisted electrolyzer using NiMoen_US
dcterms.abstractNi(OH)2/NiMoO₄ requires only 1.312 V to achieve 10 mA cm−2, substantially lower than conventional alkaline seawater electrolysis (1.576 V). Furthermore, it demonstrates remarkable stability, sustaining high current densities (up to 1.0 A cm−2) for over 130 h. This work presents a promising strategy for designing high-performance electrocatalysts for efficient and sustainable green hydrogen production from seawater.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced science, 10 Apr. 2025, v. 12, no. 14, 2410911en_US
dcterms.isPartOfAdvanced scienceen_US
dcterms.issued2025-04-10-
dc.identifier.scopus2-s2.0-105002264772-
dc.identifier.eissn2198-3844en_US
dc.identifier.artn2410911en_US
dc.description.validate202504 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University (Q-CDBU); National Research Foundation of Korea of the Korean Government (MSIT)en_US
dc.description.pubStatusPublisheden_US
dc.description.TAWiley (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Molybdate‐Modified_NiOOH_Efficient.pdf4.42 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.