Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112648
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorGeda, MWen_US
dc.creatorTang, YMen_US
dc.date.accessioned2025-04-24T02:03:54Z-
dc.date.available2025-04-24T02:03:54Z-
dc.identifier.issn2467-964Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/112648-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectHybrid systemsen_US
dc.subjectIndustrial optimizationen_US
dc.subjectInformation integrationen_US
dc.subjectQuantum-classical integrationen_US
dc.subjectQuantum computingen_US
dc.subjectSpace systemsen_US
dc.titleAdaptive hybrid quantum-classical computing framework for deep space exploration mission applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume44en_US
dc.identifier.doi10.1016/j.jii.2025.100803en_US
dcterms.abstractQuantum computing presents transformative potential for solving complex problems in industrial systems, particularly through its application in space mission operations. However, the practical deployment of fully quantum systems faces substantial challenges due to hardware noise, decoherence, and limited qubit coherence times. To address this challenge, this study proposes a framework for hybrid quantum-classical computing tailored to space systems' unique demands. The framework integrates quantum sensors, processors, and communication components with conventional spacecraft computing systems to overcome quantum hardware constraints. Through quantum-classical computing integration, the framework enhances operational efficiency and information integration essential for complex space mission operations. We discuss the critical components and integration interfaces of the hybrid framework and demonstrate its application through a case study on satellite imaging task scheduling. We implement the Quantum Approximate Optimization Algorithm (QAOA) and IBM's Qiskit quantum simulator to solve the scheduling task scheduling problem. Results obtained from the simulation demonstrate enhanced optimization capabilities compared to a greedy algorithm. The results highlight the advantages of information integration between quantum and classical systems for solving complex satellite scheduling tasks.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of industrial information integration, Mar. 2025, v. 44, 100803en_US
dcterms.isPartOfJournal of industrial information integrationen_US
dcterms.issued2025-03-
dc.identifier.eissn2452-414Xen_US
dc.identifier.artn100803en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3555-
dc.identifier.SubFormID50343-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-03-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.