Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/112618
Title: | A hybrid spatiotemporal fusion method for high spatial resolution imagery : fusion of gaofen-1 and sentinel-2 over agricultural landscapes | Authors: | Liu, SJ Liu, J Tan, XY Chen, XH Chen, J |
Issue Date: | 2024 | Source: | Journal of remote sensing, 2024, v. 4, 0159 | Abstract: | Agricultural applications of remote sensing data typically require high spatial resolution and frequent observations. The increasing availability of high spatial resolution imagery meets the spatial resolution requirement well. However, the long revisit period and frequent cloud contamination severely compromise their ability to monitor crop growth, which is characterized by high temporal heterogeneity. Many spatiotemporal fusion methods have been developed to produce synthetic images with high spatial and temporal resolutions. However, these existing methods focus on fusing low and medium spatial resolution satellite data in terms of model development and validation. When it comes to fusing medium and high spatial resolution images, the applicability remains unknown and may face various challenges. To address this issue, we propose a novel spatiotemporal fusion method, the dual-stream spatiotemporal decoupling fusion architecture model, to fully realize the prediction of high spatial resolution images. Compared with other fusion methods, the model has distinct advantages: (a) It maintains high fusion accuracy and good spatial detail by combining deep-learning-based super-resolution method and partial least squares regression model through edge and color-based weighting loss function; and (b) it demonstrates improved transferability over time by introducing image gradient maps and partial least squares regression model. We tested the StarFusion model at 3 experimental sites and compared it with 4 traditional methods: STARFM (spatial and temporal adaptive reflectance fusion), FSDAF (flexible spatiotemporal data fusion), Fit-FC (regression model fitting, spatial filtering, and residual compensation), FIRST (fusion incorporating spectral autocorrelation), and a deep learning base method-super-resolution generative adversarial network. In addition, we also investigated the possibility of our method to use multiple pairs of coarse and fine images in the training process. The results show that multiple pairs of images provide better overall performance but both of them are better than other comparison methods. Considering the difficulty in obtaining multiple cloud-free image pairs in practice, our method is recommended to provide high-quality Gaofen-1 data with improved temporal resolution in most cases since the performance degradation of single pair is not significant. | Publisher: | American Association for the Advancement of Science (AAAS) | Journal: | Journal of remote sensing | EISSN: | 2694-1589 | DOI: | 10.34133/remotesensing.0159 | Rights: | Copyright © 2024 Shuaijun Liu et al. Exclusive licensee Aerospace Information Research Institute, Chinese Academy of Sciences. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/). The following publication Shuaijun Liu, Jia Liu, Xiaoyue Tan, Xuehong Chen, Jin Chen. A Hybrid Spatiotemporal Fusion Method for High Spatial Resolution Imagery: Fusion of Gaofen-1 and Sentinel-2 over Agricultural Landscapes. J Remote Sens. 2024;4:0159 is available at https://doi.org/10.34133/remotesensing.0159. |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
remotesensing.0159.pdf | 8.01 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.