Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112589
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorTan, Ren_US
dc.creatorLi, Yen_US
dc.creatorBai, Gen_US
dc.creatorXi, Cen_US
dc.creatorXue, Pen_US
dc.creatorMa, Yen_US
dc.creatorXu, Ben_US
dc.creatorXu, Sen_US
dc.creatorHao, Jen_US
dc.date.accessioned2025-04-17T06:46:02Z-
dc.date.available2025-04-17T06:46:02Z-
dc.identifier.urihttp://hdl.handle.net/10397/112589-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectJoule heatingen_US
dc.subjectPassive radiative coolingen_US
dc.subjectPassive solar heatingen_US
dc.subjectThermal managementen_US
dc.subjectYear-round energy savingen_US
dc.titleIntegration of radiative cooling and solar heating in thermal management films for year-round energy savingsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2604en_US
dc.identifier.epage2614en_US
dc.identifier.volume13en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1021/acssuschemeng.4c10372en_US
dcterms.abstractThe application of zero-emission passive radiative coolers is a crucial step toward global carbon neutrality. However, a single radiative cooling function cannot meet the thermal requirements under various weather conditions. We present a dual-mode thermal management film that integrates passive radiative cooling and heating functions through its porous polymer surface for cooling and a light-to-heat conversion surface enabled by graphene and carbon nanotubes for heating. The surfaces of the dual-mode film were physically flipped, positioning the corresponding surface toward solar radiation to obtain the desired functionality. In the cooling surface, the film achieves sub-ambient cooling of ≈13.3 °C under 853.88 W m–2 of sunlight, thanks to its high solar reflectance (0.92) and mid-infrared emissivity (0.95). In the heating surface, it uses high solar absorption (0.90) to increase the temperature by 11.4 °C and generates Joule heating at various voltage levels. According to EnergyPlus software estimates, buildings with roofs covered in the film could reduce CO2 emissions by 1.109 billion metric tons, equivalent to 3% of current global CO2 emissions. This study offers a promising solution to climate challenges and holds great potential for energy savings and carbon reduction.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationACS sustainable chemistry & engineering, 17 Feb. 2025, v. 13, no. 6, p. 2604-2614en_US
dcterms.isPartOfACS sustainable chemistry & engineeringen_US
dcterms.issued2025-02-17-
dc.identifier.eissn2168-0485en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3537-
dc.identifier.SubFormID50316-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Project of China; Zhejiang Provincial Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-02-05en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-02-05
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.