Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112585
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorLi, Yen_US
dc.creatorYang, Nen_US
dc.creatorWang, Len_US
dc.creatorWei, Fen_US
dc.creatorLi, Wen_US
dc.date.accessioned2025-04-17T06:34:42Z-
dc.date.available2025-04-17T06:34:42Z-
dc.identifier.urihttp://hdl.handle.net/10397/112585-
dc.description61st Annual Meeting of the Association for Computational Linguistics, Toronto, Canada, July 9-14, 2023en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.rights©2023 Association for Computational Linguisticsen_US
dc.rightsMaterials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Li, Y., Yang, N., Wang, L., Wei, F., & Li, W. (2023, July). Multiview Identifiers Enhanced Generative Retrieval. In A. Rogers, J. Boyd-Graber, & N. Okazaki, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) Toronto, Canada, 6636-6648 is available at https://doi.org/10.18653/v1/2023.acl-long.366.en_US
dc.titleMultiview identifiers enhanced generative retrievalen_US
dc.typeConference Paperen_US
dc.identifier.spage6636en_US
dc.identifier.epage6648en_US
dc.identifier.volume1en_US
dc.identifier.doi10.18653/v1/2023.acl-long.366en_US
dcterms.abstractInstead of simply matching a query to pre-existing passages, generative retrieval generates identifier strings of passages as the retrieval target. At a cost, the identifier must be distinctive enough to represent a passage. Current approaches use either a numeric ID or a text piece (such as a title or substrings) as the identifier. However, these identifiers cannot cover a passage’s content well. As such, we are motivated to propose a new type of identifier, synthetic identifiers, that are generated based on the content of a passage and could integrate contextualized information that text pieces lack. Furthermore, we simultaneously consider multiview identifiers, including synthetic identifiers, titles, and substrings. These views of identifiers complement each other and facilitate the holistic ranking of passages from multiple perspectives. We conduct a series of experiments on three public datasets, and the results indicate that our proposed approach performs the best in generative retrieval, demonstrating its effectiveness and robustness.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn A. Rogers, J. Boyd-Graber, N. Okazaki (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), p. 6636-6648. Stroudsburg, PA: Association for Computational Linguistics (ACL), 2023en_US
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85174421453-
dc.relation.ispartofbookProceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)en_US
dc.relation.conferenceAssociation for Computational Linguistics [ACL]en_US
dc.description.validate202504 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (62076212); PolyU internal grants (ZVQ0)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2023.acl-long.366.pdf509.46 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.