Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112580
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Sen_US
dc.creatorSun, Den_US
dc.creatorToh, KCen_US
dc.date.accessioned2025-04-17T06:34:40Z-
dc.date.available2025-04-17T06:34:40Z-
dc.identifier.issn0025-5610en_US
dc.identifier.urihttp://hdl.handle.net/10397/112580-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s) 2024en_US
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Hu, S., Sun, D. & Toh, KC. Quantifying low rank approximations of third order symmetric tensors. Math. Program. 213, 1119–1168 (2025) is available at https://doi.org/10.1007/s10107-024-02165-1.en_US
dc.subjectDualityen_US
dc.subjectLow rank approximationen_US
dc.subjectMomenten_US
dc.subjectOptimalityen_US
dc.subjectOrthogonally decomposable tensoren_US
dc.subjectPolynomialen_US
dc.subjectProjectionen_US
dc.subjectQuasi-optimalen_US
dc.subjectRank constrainten_US
dc.subjectSDP relaxationen_US
dc.subjectTensoren_US
dc.titleQuantifying low rank approximations of third order symmetric tensorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1119en_US
dc.identifier.epage1168en_US
dc.identifier.volume213en_US
dc.identifier.issue1-2en_US
dc.identifier.doi10.1007/s10107-024-02165-1en_US
dcterms.abstractIn this paper, we present a method to certify the approximation quality of a low rank tensor to a given third order symmetric tensor. Under mild assumptions, best low rank approximation is attained if a control parameter is zero or quantified quasi-optimal low rank approximation is obtained if the control parameter is positive. This is based on a primal-dual method for computing a low rank approximation for a given tensor. The certification is derived from the global optimality of the primal and dual problems, and is characterized by easily checkable relations between the primal and the dual solutions together with another rank condition. The theory is verified theoretically for orthogonally decomposable tensors as well as numerically through examples in the general case.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical programming, Sept 2025, v. 213, no. 1-2, p. 1119–1168en_US
dcterms.isPartOfMathematical programmingen_US
dcterms.issued2025-09-
dc.identifier.scopus2-s2.0-85210484165-
dc.identifier.eissn1436-4646en_US
dc.description.validate202504 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science Foundation of China under Grant 12171128; Natural Science Foundation of Zhejiang Province, China, under Grant LY22A010022; Research Center for Intelligent Operations Research at The Hong Kong Polytechnic University; Ministry of Education, Singapore, under its Academic Research Fund Tier 3 Grant call (MOE-2019-T3-1-010)en_US
dc.description.pubStatusPublisheden_US
dc.description.TASpringer Nature (2024)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
s10107-024-02165-1.pdf765.05 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.