Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112553
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorAkrivis, Gen_US
dc.creatorLi, Ben_US
dc.creatorTang, Ren_US
dc.creatorZhang, Hen_US
dc.date.accessioned2025-04-16T04:34:26Z-
dc.date.available2025-04-16T04:34:26Z-
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://hdl.handle.net/10397/112553-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Akrivis, G., Li, B., Tang, R., & Zhang, H. (2025). High-order mass-, energy-and momentum-conserving methods for the nonlinear Schrödinger equation. Journal of Computational Physics, 532, 113974 is available at 10.1016/j.jcp.2025.113974.en_US
dc.subjectEnergy conservationen_US
dc.subjectHigh-order methodsen_US
dc.subjectMass conservationen_US
dc.subjectMomentum conservationen_US
dc.subjectNonlinear Schrödinger equationen_US
dc.subjectSpace-time finite element methoden_US
dc.titleHigh-order mass-, energy- and momentum-conserving methods for the nonlinear schrödinger equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume532en_US
dc.identifier.doi10.1016/j.jcp.2025.113974en_US
dcterms.abstractThis paper introduces a novel formulation and an associated space-time finite element method for simulating solutions to the nonlinear Schrödinger equation. A major advantage of the proposed algorithm is its intrinsic ability to preserve the conservation of mass, energy, and momentum at the discrete level. This is proved for the numerical solutions determined by the fully discrete implicit scheme. An effective iterative scheme is proposed for solving the nonlinear system based on an equivalent formulation which suggests using Newton's iteration for the solution and no iteration for the Lagrange multipliers in the nonlinear system. Extensive numerical examples are provided to demonstrate the high-order convergence and effectiveness of the proposed algorithm in conserving mass, energy, and momentum in the simulation of one-dimensional Ma-solitons and bi-solitons, as well as of two-dimensional solitons governed by the nonlinear Schrödinger equation. The numerical results show that the mass-, energy- and momentum-conserving method designed in this paper also significantly reduces the errors of the numerical solutions in long-time simulations compared with methods which do not conserve these quantities.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational physics, 1 July 2025, v. 532, 113974en_US
dcterms.isPartOfJournal of computational physicsen_US
dcterms.issued2025-07-01-
dc.identifier.scopus2-s2.0-105001711102-
dc.identifier.artn113974en_US
dc.description.validate202504 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (Project No. 12231003); internal grant of The Hong Kong Polytechnic University (Project ID: P0045404); Collaborative Research Project at The Hong Kong Polytechnic University (Project ID: P0038443); AMSS-PolyU Joint Laboratory and Hong Kong Research Grants Council (GRF Project No. PolyU15303022); National Natural Science Foundation of China (Project Nos. 12120101001, 12371447, 12171284); Natural Science Foundation of Shandong Province (Project Nos. ZR2021ZD03)en_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0021999125002578-main.pdf3.71 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.