Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112413
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorMa, Wen_US
dc.creatorYin, Hen_US
dc.creatorWong, PJYen_US
dc.creatorWang, Den_US
dc.creatorSun, Yen_US
dc.creatorSu, Zen_US
dc.date.accessioned2025-04-10T02:55:33Z-
dc.date.available2025-04-10T02:55:33Z-
dc.identifier.urihttp://hdl.handle.net/10397/112413-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication W. Ma, H. Yin, P. J. Y. Wong, D. Wang, Y. Sun and Z. Su, "TripletLoc: One-Shot Global Localization Using Semantic Triplet in Urban Environments," in IEEE Robotics and Automation Letters, vol. 10, no. 2, pp. 1569-1576, Feb. 2025 is available at https://doi.org/10.1109/LRA.2024.3523228.en_US
dc.subjectAutonomous vehiclesen_US
dc.subjectGlobal localizationen_US
dc.subjectGraph theoryen_US
dc.subjectPose estimationen_US
dc.subjectSemantic tripleten_US
dc.titleTripletLoc : one-shot global localization using semantic triplet in urban environmentsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1569en_US
dc.identifier.epage1576en_US
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1109/LRA.2024.3523228en_US
dcterms.abstractThis study presents a system, TripletLoc, for fast and robust global registration of a single LiDAR scan to a large-scale reference map. In contrast to conventional methods using place recognition and point cloud registration, TripletLoc directly generates correspondences on lightweight semantics, which is close to how humans perceive the world. Specifically, TripletLoc first respectively extracts instances from the single query scan and the large-scale reference map to construct two semantic graphs. Then, a novel semantic triplet-based histogram descriptor is designed to achieve instance-level matching between the query scan and the reference map. Graph-theoretic outlier pruning is leveraged to obtain inlier correspondences from raw instance-to-instance correspondences for robust 6-DoF pose estimation. In addition, a novel Road Surface Normal (RSN) map is proposed to provide a prior rotation constraint to further enhance pose estimation. We evaluate TripletLoc extensively on a large-scale public dataset, HeliPR, which covers diverse and complex scenarios in urban environments. Experimental results demonstrate that TripletLoc could achieve fast and robust global localization under diverse and challenging environments, with high memory efficiency.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE robotics and automation letters, Feb. 2025, v. 10, no. 2, p. 1569-1576en_US
dcterms.isPartOfIEEE robotics and automation lettersen_US
dcterms.issued2025-02-
dc.identifier.eissn2377-3766en_US
dc.description.validate202504 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3520-
dc.identifier.SubFormID50288-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Innovation and Technology Commissio; National Research Foundation (NRF), Singapore, under the NRF Medium Sized Centre scheme (CARTIN), ASTAR; NRF, Singapore and Maritime and Port Authority of Singapore; City University of Hong Kongen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ma_TripletLoc_One-Shot_Global.pdfPre-Published version7.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

17
Citations as of Apr 14, 2025

Downloads

8
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.