Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112412
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLi, Yen_US
dc.creatorSong, Wen_US
dc.creatorGai, Ten_US
dc.creatorWang, Len_US
dc.creatorLi, Zen_US
dc.creatorHe, Pen_US
dc.creatorLiu, Qen_US
dc.creatorLee, LYSen_US
dc.date.accessioned2025-04-09T08:16:31Z-
dc.date.available2025-04-09T08:16:31Z-
dc.identifier.issn0021-9797en_US
dc.identifier.urihttp://hdl.handle.net/10397/112412-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).en_US
dc.rightsThe following publication Li, Y., Song, W., Gai, T., Wang, L., Li, Z., He, P., ... & Lee, L. Y. S. (2025). Self-activated oxophilic surface of porous molybdenum carbide nanosheets promotes hydrogen evolution activity in alkaline environment. Journal of Colloid and Interface Science, 691, 137423 is available at 10.1016/j.jcis.2025.137423.en_US
dc.subjectHydrogen evolution reactionen_US
dc.subjectPorous Mo<sub>2</sub>C nanosheetsen_US
dc.subjectSelf-activation effecten_US
dc.subjectWater dissociationen_US
dc.titleSelf-activated oxophilic surface of porous molybdenum carbide nanosheets promotes hydrogen evolution activity in alkaline environmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume691en_US
dc.identifier.doi10.1016/j.jcis.2025.137423en_US
dcterms.abstractMolybdenum carbides are promising alternatives to Pt-based catalysts for the hydrogen evolution reaction (HER) due to their similar d-band electronic configuration. Notably, MoxC exhibits superior HER kinetics in alkaline media compared to acidic conditions, contrasting with Pt-based catalysts. Herein, we present 3D porous β-Mo2C nanosheets, achieving an overpotential of 111 mV at 10 mA cm−2 in 1 M KOH, significantly lower than in acidic environments. Simulations on pristine Mo2C surface reveal that water dissociation poses a higher energy barrier in alkaline media, suggesting that crystal structure alone does not dictate kinetics. Operando attenuated total reflection surface-enhanced infrared absorption spectroscopy shows that Mo2C activates interfacial water, generating liquid-like and free water, and facilitates hydroxyl species adsorption, reducing activation energy to below 38.43 ± 0.19 kJ/mol. Our findings on the self-activation effect offer insights into the HER mechanism of Mo-based electrocatalysts and guide the design of highly active HER catalysts.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of colloid and interface science, Aug. 2025, v. 691, 137423en_US
dcterms.isPartOfJournal of colloid and interface scienceen_US
dcterms.issued2025-08-
dc.identifier.scopus2-s2.0-105000996732-
dc.identifier.eissn1095-7103en_US
dc.identifier.artn137423en_US
dc.description.validate202504 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextAnhui Polytechnic University research start-up fund (No. 2022YQQ045); Hong Kong Polytechnic University (Q-CDBU); University Natural Science Research Project of Anhui Province (No. 2024AH040017).en_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0021979725008148-main.pdf6.95 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Apr 14, 2025

Downloads

1
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.