Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112383
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Health Technology and Informatics-
dc.creatorZhang, Z-
dc.creatorLiu, T-
dc.creatorFan, G-
dc.creatorPu, Y-
dc.creatorLi, B-
dc.creatorChen, X-
dc.creatorFeng, Q-
dc.creatorZhou, S-
dc.date.accessioned2025-04-09T00:51:49Z-
dc.date.available2025-04-09T00:51:49Z-
dc.identifier.urihttp://hdl.handle.net/10397/112383-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rightsCopyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Zhang, Z., Liu, T., Fan, G., Pu, Y., Li, B., Chen, X., Feng, Q., & Zhou, S. (2024). Verdiff-Net: A Conditional Diffusion Framework for Spinal Medical Image Segmentation. Bioengineering, 11(10), 1031 is available at https://doi.org/10.3390/bioengineering11101031.en_US
dc.subjectDiffusion modelen_US
dc.subjectMulti-modalityen_US
dc.subjectSpinal segmentationen_US
dc.titleVerdiff-Net : a conditional diffusion framework for spinal medical image segmentationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume11-
dc.identifier.issue10-
dc.identifier.doi10.3390/bioengineering11101031-
dcterms.abstractSpinal medical image segmentation is critical for diagnosing and treating spinal disorders. However, ambiguity in anatomical boundaries and interfering factors in medical images often cause segmentation errors. Current deep learning models cannot fully capture the intrinsic data properties, leading to unstable feature spaces. To tackle the above problems, we propose Verdiff-Net, a novel diffusion-based segmentation framework designed to improve segmentation accuracy and stability by learning the underlying data distribution. Verdiff-Net integrates a multi-scale fusion module (MSFM) for fine feature extraction and a noise semantic adapter (NSA) to refine segmentation masks. Validated across four multi-modality spinal datasets, Verdiff-Net achieves a high Dice coefficient of 93%, demonstrating its potential for clinical applications in precision spinal surgery.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationBioengineering, Oct. 2024, v. 11, no. 10, 1031-
dcterms.isPartOfBioengineering-
dcterms.issued2024-10-
dc.identifier.scopus2-s2.0-85207676688-
dc.identifier.eissn2306-5354-
dc.identifier.artn1031-
dc.description.validate202504 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key R&D Project of China; Natural Science Foundation of Guangdong Province; Shenzhen Technology Innovation Commission; Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robotsen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
bioengineering-11-01031.pdf6.25 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Apr 14, 2025

Downloads

4
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.