Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112334
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorGan, Len_US
dc.creatorZhang, Jen_US
dc.creatorWu, Yen_US
dc.creatorChen, Zen_US
dc.creatorZhao, Zen_US
dc.creatorLin, Sen_US
dc.creatorJiang, Yen_US
dc.date.accessioned2025-04-08T07:20:28Z-
dc.date.available2025-04-08T07:20:28Z-
dc.identifier.issn0013-936Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/112334-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectAerosolen_US
dc.subjectNanofiltrationen_US
dc.subjectPolyelectrolyte complexen_US
dc.subjectPolyelectrolyte multilayeren_US
dc.subjectPrintingen_US
dc.titleTailoring polyelectrolyte multilayer nanofiltration membranes by aerosol-assisted printing : insights into membrane formation mechanismsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage913en_US
dc.identifier.epage923en_US
dc.identifier.volume59en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1021/acs.est.4c08638en_US
dcterms.abstractPolyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics. Our study unveils the three stages of membrane formation from assembly of polyethylenimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS): aerosol deposition, single PE layer formation, and PEM assembly. The droplet deposition is governed by inertial impaction, and the deposited PEs migrate/entangle to form a single PE layer. The thicknesses of the PE layer and PEM exhibit linear growth as the number of printing scan increases. Furthermore, PE interdigitation forms an effective polymeric network barrier, which increases the resistance to solute and water transport. By manipulating the PE deposition mass and layering, PEM membranes with tunable pore radii (0.40–0.56 nm) and water permeability (5–60 L·m–2·h–1·bar–1) were obtained for various water treatment applications, ranging from micropollutant removal to humic acid filtration. Our study offers valuable mechanistic insights into the PEM formation and precise structural adjustment via printing, thus facilitating scalable manufacturing and widespread applications of the PEM NF membranes.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnvironmental science & technology, 14 Jan. 2025, v. 59, no. 1, p. 913-923en_US
dcterms.isPartOfEnvironmental science & technologyen_US
dcterms.issued2025-01-14-
dc.identifier.eissn1520-5851en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3515-
dc.identifier.SubFormID50283-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-12-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-12-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

2
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.