Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112331
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorHuo, Xen_US
dc.creatorShi, Xen_US
dc.creatorWang, Qen_US
dc.creatorZeng, Yen_US
dc.creatorAn, Len_US
dc.date.accessioned2025-04-08T03:21:57Z-
dc.date.available2025-04-08T03:21:57Z-
dc.identifier.issn2451-9103en_US
dc.identifier.urihttp://hdl.handle.net/10397/112331-
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.subjectAqueous redox flow batteryen_US
dc.subjectEnergy storage systemen_US
dc.subjectpH-decouplingen_US
dc.subjectRedox flow batteryen_US
dc.subjectRenewable energyen_US
dc.titleHigh-voltage pH-decoupling aqueous redox flow batteries for future energy storageen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume49en_US
dc.identifier.doi10.1016/j.coelec.2024.101633en_US
dcterms.abstractAqueous redox flow batteries (ARFBs) have attracted lots of attention as powerful and durable technologies for sustainable energy storage. However, the wide adoptions of ARFBs still face the challenge of restrained voltage output due to the limited electrochemical stable window of water. As a prospective solution, the pH-decoupling strategy, which uses positive and negative electrolytes with different pH values, has been proven to overcome the thermodynamic limit of water and expand the operational voltage range of the ARFBs. This review outlines the recent advancements in different types of pH-decoupling ARFBs, including the two-chamber system, three-chamber system, and decoupled system with independent pH recovery function. The merits and technical challenges for being highlighted to assess the application potentials of each system design. Furthermore, insights for future research directions are provided to guide further system enhancement and promote the development of stable pH-decoupling ARFBs.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCurrent opinion in electrochemistry, Feb. 2025, v. 49, 101633en_US
dcterms.isPartOfCurrent opinion in electrochemistryen_US
dcterms.issued2025-02-
dc.identifier.eissn2451-9111en_US
dc.identifier.artn101633en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3507, a3814d-
dc.identifier.SubFormID50274, 51211-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; PolyU Carbon Neutrality Funding Scheme; Research Institute for Advanced Manufacturing; Research Institute for Smart Energyen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-28en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-28
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.