Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112224
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Management and Marketing-
dc.creatorLiu, B-
dc.creatorZhang, X-
dc.creatorLiu, K-
dc.creatorHu, X-
dc.creatorNgai, EWT-
dc.creatorChen, W-
dc.creatorChan, HY-
dc.creatorHu, Y-
dc.creatorLiu, M-
dc.date.accessioned2025-04-08T00:43:33Z-
dc.date.available2025-04-08T00:43:33Z-
dc.identifier.issn1460-4582-
dc.identifier.urihttp://hdl.handle.net/10397/112224-
dc.language.isoenen_US
dc.publisherSage Publications Ltd.en_US
dc.rights© The Author(s) 2024.en_US
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).en_US
dc.rightsThe following publication Liu B, Zhang X, Liu K, et al. Interpretable subgroup learning-based modeling framework: Study of diabetic kidney disease prediction. Health Informatics Journal. 2024;30(4) is available at https://dx.doi.org/10.1177/14604582241291379.en_US
dc.subjectClinical decision support systemen_US
dc.subjectClinical decision support systemen_US
dc.subjectDiabetic kidney diseaseen_US
dc.subjectElectronic health recorden_US
dc.subjectPredictive modelingen_US
dc.subjectSubgroup learningen_US
dc.titleInterpretable subgroup learning-based modeling framework : study of diabetic kidney disease predictionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume30-
dc.identifier.issue4-
dc.identifier.doi10.1177/14604582241291379-
dcterms.abstractObjectives: Complex diseases, like diabetic kidney disease (DKD), often exhibit heterogeneity, challenging accurate risk prediction with machine learning. Traditional global models ignore patient differences, and subgroup learning lacks interpretability and predictive efficiency. This study introduces the Interpretable Subgroup Learning-based Modeling (iSLIM) framework to address these issues.-
dcterms.abstractMethods: iSLIM integrates expert knowledge with a tree-based recursive partitioning approach to identify DKD subgroups within an EHR dataset of 11,559 patients. It then constructs separate models for each subgroup, enhancing predictive accuracy while preserving interpretability.-
dcterms.abstractResults: Five clinically relevant subgroups are identified, achieving an average sensitivity of 0.8074, outperforming a single global model by 0.1104. Post hoc analyses provide pathological and biological evidence supporting subgroup validity and potential DKD risk factors.-
dcterms.abstractConclusion: The iSLIM surpasses traditional global model in predictive performance and subgroup-specific risk factor interpretation, enhancing the understanding of DKD’s heterogeneous mechanisms and potentially increasing the adoption of machine learning models in clinical decision-making.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationHealth informatics journal, 2024, v. 30, no. 4-
dcterms.isPartOfHealth informatics journal-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85206872353-
dc.identifier.pmid39425633-
dc.identifier.eissn1741-2811-
dc.description.validate202504 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextMajor Research Plan of the National Natural Science Foundation of China; Science and Technology Development in Guangdong Province; Guangdong Engineering Technology Research Center for Big Data Precision Healthcare; National Natural Science Foundation of China; Guangzhou Science and Technology Plan Project; NIH/NIDDK; NSF Smart and Connected Healthen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Interpretable_Subgroup_Learning-Based.pdf1.94 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Downloads

2
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.