Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112211
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorYu, Jen_US
dc.creatorTeng, Fen_US
dc.creatorYe, Jen_US
dc.creatorZhang, Den_US
dc.creatorYu, Ken_US
dc.creatorYu, Jen_US
dc.creatorDai, JGen_US
dc.creatorWeng, Yen_US
dc.date.accessioned2025-04-03T03:06:33Z-
dc.date.available2025-04-03T03:06:33Z-
dc.identifier.issn0950-0618en_US
dc.identifier.urihttp://hdl.handle.net/10397/112211-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subject3D concrete printingen_US
dc.subjectEngineered cementitious compositesen_US
dc.subjectFlexural strengthen_US
dc.subjectSize-dependent modelen_US
dc.subjectSize effecten_US
dc.titleSize-dependent model to predict the flexural strength of 3D printed engineered cementitious composites beamsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume462en_US
dc.identifier.doi10.1016/j.conbuildmat.2025.139994en_US
dcterms.abstractThis study developed a size-dependent model to predict the flexural strength of 3D printed engineered cementitious composites (ECC) beams with different beam spans. The proposed model relates the flexural strength of printed ECC beams to beam spans based on a stochastic tensile constitutive model of ECC, by taking the size effect into account. ECC beams with four spans (240 mm, 300 mm, 450 mm, and 1500 mm) were printed and tested by four-point bending. The results showed that the size-dependent model can predict the flexural strength with an approximate accuracy of 90%. Compared to the size-independent model, the proposed size-dependent model improved the prediction accuracy by approximately 27%. The force analysis of the shear strength of interlayers further revealed that interfacial bonding has a negligible impact on the simulated flexural strength. Consequently, the developed size-dependent model can potentially guide the structural design of 3D printed ECC beams.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationConstruction and building materials, 7 Feb. 2025, v. 462, 139994en_US
dcterms.isPartOfConstruction and building materialsen_US
dcterms.issued2025-02-07-
dc.identifier.artn139994en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3499-
dc.identifier.SubFormID50261-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (No. 51978504); The Hong Kong Polytechnic University (P0038966); The Hong Kong Polytechnic University (P0046345)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-07en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-07
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Apr 7, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.