Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112210
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorYu, Jen_US
dc.creatorXu, Fen_US
dc.creatorZhang, Hen_US
dc.creatorYe, Jen_US
dc.creatorYu, Jen_US
dc.creatorDai, JGen_US
dc.creatorWeng, Yen_US
dc.date.accessioned2025-04-03T03:04:04Z-
dc.date.available2025-04-03T03:04:04Z-
dc.identifier.issn0958-9465en_US
dc.identifier.urihttp://hdl.handle.net/10397/112210-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subject3D concrete printingen_US
dc.subjectEarly age shrinkageen_US
dc.subjectEngineered cementitious compositesen_US
dc.subjectIncinerator bottom ashen_US
dc.subjectSustainabilityen_US
dc.titleLeveraging incinerator bottom ash for mitigating early age shrinkage in 3D printed engineered cementitious compositesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume157en_US
dc.identifier.doi10.1016/j.cemconcomp.2025.105933en_US
dcterms.abstractThis study investigates the use of incinerator bottom ash (IBA) as a supplementary cementitious material to mitigate early age shrinkage in 3D printed engineered cementitious composites (3DP-ECC). IBA was processed through milling and thermal treatment before incorporation into 3DP-ECC. The fresh and hardened properties, hydration kinetics and products, early age shrinkage, and microstructural characteristics of 3DP-ECC with IBA were evaluated. Results indicate that pre-treated IBA reduces autogenous shrinkage and plastic shrinkage by 56 % and 30 %, respectively. The substitution of IBA increases the volume fraction of macropores (>1000 nm) of 3DP-ECC at 3 days and 7 days by approximately 300 % and 500 %, respectively, alleviating early age shrinkage. Sustainability analysis reveals that the incorporation of IBA can reduce the normalized embodied energy and carbon footprint of 3DP-ECC by over 17 %. These findings provide a promising approach to utilizing waste materials in mitigating early age shrinkage in 3DP-ECC towards sustainable digital construction.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete composites, Mar. 2025, v. 157, 105933en_US
dcterms.isPartOfCement and concrete compositesen_US
dcterms.issued2025-03-
dc.identifier.eissn1873-393Xen_US
dc.identifier.artn105933en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3499-
dc.identifier.SubFormID50260-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (No. 52308284 ); National Natural Science Foundation of China (No. 51978504 ); Hong Kong Polytechnic University (P0038966); Guangdong Basic and Applied Basic Research Foundation (No. 2024A1515011870)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-03-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

12
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.