Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112210
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorYu, Jen_US
dc.creatorXu, Fen_US
dc.creatorZhang, Hen_US
dc.creatorYe, Jen_US
dc.creatorYu, Jen_US
dc.creatorDai, JGen_US
dc.creatorWeng, Yen_US
dc.date.accessioned2025-04-03T03:04:04Z-
dc.date.available2025-04-03T03:04:04Z-
dc.identifier.issn0958-9465en_US
dc.identifier.urihttp://hdl.handle.net/10397/112210-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subject3D concrete printingen_US
dc.subjectEarly age shrinkageen_US
dc.subjectEngineered cementitious compositesen_US
dc.subjectIncinerator bottom ashen_US
dc.subjectSustainabilityen_US
dc.titleLeveraging incinerator bottom ash for mitigating early age shrinkage in 3D printed engineered cementitious compositesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume157en_US
dc.identifier.doi10.1016/j.cemconcomp.2025.105933en_US
dcterms.abstractThis study investigates the use of incinerator bottom ash (IBA) as a supplementary cementitious material to mitigate early age shrinkage in 3D printed engineered cementitious composites (3DP-ECC). IBA was processed through milling and thermal treatment before incorporation into 3DP-ECC. The fresh and hardened properties, hydration kinetics and products, early age shrinkage, and microstructural characteristics of 3DP-ECC with IBA were evaluated. Results indicate that pre-treated IBA reduces autogenous shrinkage and plastic shrinkage by 56 % and 30 %, respectively. The substitution of IBA increases the volume fraction of macropores (>1000 nm) of 3DP-ECC at 3 days and 7 days by approximately 300 % and 500 %, respectively, alleviating early age shrinkage. Sustainability analysis reveals that the incorporation of IBA can reduce the normalized embodied energy and carbon footprint of 3DP-ECC by over 17 %. These findings provide a promising approach to utilizing waste materials in mitigating early age shrinkage in 3DP-ECC towards sustainable digital construction.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete composites, Mar. 2025, v. 157, 105933en_US
dcterms.isPartOfCement and concrete compositesen_US
dcterms.issued2025-03-
dc.identifier.eissn1873-393Xen_US
dc.identifier.artn105933en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3499-
dc.identifier.SubFormID50260-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (No. 52308284 ); National Natural Science Foundation of China (No. 51978504 ); Hong Kong Polytechnic University (P0038966); Guangdong Basic and Applied Basic Research Foundation (No. 2024A1515011870)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-03-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Apr 7, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.