Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112202
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorZhang, MRen_US
dc.creatorWang, EHen_US
dc.creatorNi, Men_US
dc.creatorZheng, KQen_US
dc.creatorOuyang, MGen_US
dc.creatorHu, HRen_US
dc.creatorWang, HWen_US
dc.creatorLu, LGen_US
dc.creatorRen, DSen_US
dc.creatorChen, YPen_US
dc.date.accessioned2025-04-01T03:43:36Z-
dc.date.available2025-04-01T03:43:36Z-
dc.identifier.urihttp://hdl.handle.net/10397/112202-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).en_US
dc.rightsThe following publication Zhang, M., Wang, E., Ni, M., Zheng, K., Ouyang, M., Hu, H., Wang, H., Lu, L., Ren, D., & Chen, Y. (2024). A numerical analysis of metal-supported solid oxide fuel cell with a focus on temperature field. Heliyon, 10(17), e37271 is available at https://doi.org/10.1016/j.heliyon.2024.e37271.en_US
dc.subjectMetal-supported solid oxide fuel cellen_US
dc.subjectCeria-based multi-layer electrolyteen_US
dc.subjectMulti-physical modelen_US
dc.subjectRadiationen_US
dc.subjectComprehensive field analysisen_US
dc.titleA numerical analysis of metal-supported solid oxide fuel cell with a focus on temperature fielden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume10en_US
dc.identifier.issue17en_US
dc.identifier.doi10.1016/j.heliyon.2024.e37271en_US
dcterms.abstractMetal-supported solid oxide fuel cell (MS-SOFC) is very promising for intermediate temperature solid oxide fuel cell (SOFC) due to better mechanical strength, low materials cost, and simplified stack assembling. However, the effects of metal support on the performance and temperature field of MS-SOFC is still necessary for further study. In this study, a three-dimensional multi-physical model is developed to investigate how the use of metal support influence the electrochemical performance and the temperature field of MS-SOFC with a ceria-based electrolyte. The multiphysical model fully considers the conservation equations of mass, momentum, and energy that are coupled with mass transport and electrochemical reactions. The wall temperature in the radiation model is calculated using a discrete method. It is found that the radiation heat flux accounts for 3.13 % of the total heat flux. More importantly, the temperature difference of MSSOFC is 3.61 % lower than that of conventional anode-supported SOFC, leading to improved temperature uniformity and cell durability.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationHeliyon, 15 Sept 2024, v. 10, no. 17, e37271en_US
dcterms.isPartOfHeliyonen_US
dcterms.issued2024-09-15-
dc.identifier.isiWOS:001313209600001-
dc.identifier.pmid39290286-
dc.identifier.eissn2405-8440en_US
dc.identifier.artne37271en_US
dc.description.validate202504 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2405844024133026-main.pdf5.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

WEB OF SCIENCETM
Citations

1
Citations as of Apr 3, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.