Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112190
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorWang, Yen_US
dc.creatorSun, Xen_US
dc.creatorCui, Den_US
dc.creatorWang, XFen_US
dc.creatorJia, ZJen_US
dc.creatorZhang, ZGen_US
dc.date.accessioned2025-04-01T03:43:32Z-
dc.date.available2025-04-01T03:43:32Z-
dc.identifier.issn2080-9050en_US
dc.identifier.urihttp://hdl.handle.net/10397/112190-
dc.language.isoenen_US
dc.publisherPolska Akademia Nauk * Komitet Metrologii i Aparatury Naukowejen_US
dc.rightsCopyright © 2024. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made.en_US
dc.rightsThe following publication Wang, Y., Sun, X., Cui, D., Wang, X., Jia, Z., & Zhang, Z. (2024). An adaptive estimation of ground vehicle state with unknown measurement noise. Metrology and Measurement Systems, 31(2), 383-399. is available at https://doi.org/10.24425/mms.2024.149705.en_US
dc.subjectVehicle state estimationen_US
dc.subjectSquare-root cubature Kalman filteren_US
dc.subjectMeasurement noiseen_US
dc.subjectExpectation- maximization methoden_US
dc.titleAn adaptive estimation of ground vehicle state with unknown measurement noiseen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage383en_US
dc.identifier.epage399en_US
dc.identifier.volume31en_US
dc.identifier.issue2en_US
dc.identifier.doi10.24425/mms.2024.149705en_US
dcterms.abstractAccurate information about the vehicle state such as sideslip angle is critical for both advanced assisted driving systems and driverless driving. These vehicle states are used for active safety control and motion planning of the vehicle. Since these state parameters cannot be directly measured by onboard sensors, this paper proposes an adaptive estimation scheme in case of unknown measurement noise. Firstly, an estimation method based on the bicycle model is established using a square-root cubature Kalman filter (SQCKF), and secondly, the expectation maximization (EM) approach is used to dynamically update the statistic parameters of measurement noise and integrate it into SQCKF to form a new expectation maximization square-root cubature Kalman filter (EMSQCKF) algorithm. Simulations and experiments show that EMSQCKF has higher estimation accuracy under different driving conditions compared to the unscented Kalman filter.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMetrology and measurement systems, 2024, v. 31, no. 2, p. 383-399en_US
dcterms.isPartOfMetrology and measurement systemsen_US
dcterms.issued2024-
dc.identifier.isiWOS:001295660600011-
dc.identifier.eissn2300-1941en_US
dc.description.validate202504 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextSmart Traffic Fund; National Natural Science Foundation of China(National Natural Science Foundation of China (NSFC))en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
11_int.pdf4.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.