Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112176
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorAdeniran, IAen_US
dc.creatorNazeer, Men_US
dc.creatorWong, MSen_US
dc.creatorZhu, Ren_US
dc.creatorYang, JXen_US
dc.creatorChan, PWen_US
dc.date.accessioned2025-04-01T03:43:27Z-
dc.date.available2025-04-01T03:43:27Z-
dc.identifier.issn1569-8432en_US
dc.identifier.urihttp://hdl.handle.net/10397/112176-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Adeniran, I. A., Nazeer, M., Wong, M. S., Zhu, R., Yang, J., & Chan, P.-W. (2024). Improved fusion model for generating hourly fine scale land surface temperature data under all-weather condition. International Journal of Applied Earth Observation and Geoinformation, 131, 103981 is available at https://doi.org/10.1016/j.jag.2024.103981.en_US
dc.subjectLand Surface Temperatureen_US
dc.subjectAir Temperatureen_US
dc.subjectData fusionen_US
dc.subjectLandsat-8en_US
dc.subjectSentinel-3en_US
dc.subjectHimawari-8en_US
dc.titleImproved fusion model for generating hourly fine scale land surface temperature data under all-weather conditionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume131en_US
dc.identifier.doi10.1016/j.jag.2024.103981en_US
dcterms.abstractExisting Land Surface Temperature (LST) fusion models encounter some challenges due to missing data, complex weather areas, and rapid land cover changes. To overcome these limitations, we proposed the Integrated SpatioTemporal Fusion Algorithm (ISFAT). ISFAT is developed based on contemporary fusion models but in addition incorporates data from partially contaminated LSTs using the masked weight function. This helps to predict fine -scale LST on prediction date while considering error resulting from landcover changes between the base and prediction date. This algorithm also factors in the calculation of model residuals, which are distributed back to the predicted fine -scale LST using the thin -plate spline function. The fine -scale LST on prediction can thereafter employed for predicting hourly fine -scale LST images by integrating a coarse resolution LST with hourly temporal resolution. Compared to contemporary LST fusion models, ISFAT demonstrates superior performance, with mean average differences of 0.1 K and 0.27 K over SADFAT and STITFM, respectively. Additionally, diurnal LST predictions from ISFAT compare well with air temperatures from automatic weather stations. Notably, on February 18, 2020, ISFAT effectively optimized fine -scale LST for Hong Kong, achieving an RMSE of 3.33 K, despite the limitation of cloud cover in the base date. The newly developed ISFAT could facilitate better LST retrieval over a large spatial coverage under different degrees of cloud contamination.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of applied earth observation and geoinformation, July 2024, v. 131, 103981en_US
dcterms.isPartOfInternational journal of applied earth observation and geoinformationen_US
dcterms.issued2024-07-
dc.identifier.isiWOS:001261038700001-
dc.identifier.eissn1872-826Xen_US
dc.identifier.artn103981en_US
dc.description.validate202504 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCollaborative Research Fund from the Research Grants Council, Hong Kong, China; Hong Kong Polytechnic University(Hong Kong Polytechnic University); Research Institute for Sustainable Urban Developmenten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S1569843224003352-main.pdf16.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Apr 14, 2025

Downloads

2
Citations as of Apr 14, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.