Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112165
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Management and Marketing-
dc.creatorZheng, Jen_US
dc.creatorNg, KCen_US
dc.creatorZheng, Ren_US
dc.creatorTam, KYen_US
dc.date.accessioned2025-04-01T03:11:16Z-
dc.date.available2025-04-01T03:11:16Z-
dc.identifier.issn0742-1222en_US
dc.identifier.urihttp://hdl.handle.net/10397/112165-
dc.language.isoenen_US
dc.publisherTaylor & Francis Inc.en_US
dc.rights© 2024 Taylor & Francis Group, LLCen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Management Information Systems on 19 Feb 2024 (published online), https://doi.org/10.1080/07421222.2023.2301176en_US
dc.subjectFinancial communicationen_US
dc.subjectFinancial textsen_US
dc.subjectFinancial word listsen_US
dc.subjectMarket sentimenten_US
dc.subjectSentiment evolutionen_US
dc.subjectTextual analysisen_US
dc.subjectWord corporaen_US
dc.subjectWord embeddingen_US
dc.titleThe effects of sentiment evolution in financial texts : a word embedding approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage178en_US
dc.identifier.epage205en_US
dc.identifier.volume41en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1080/07421222.2023.2301176en_US
dcterms.abstractWe examine the evolutionary effects of sentiment words in financial text and their implications for various business outcomes. We propose an algorithm called Word List Vector for Sentiment (WOLVES) that leverages both a human-defined sentiment word list and the word embedding approach to quantify text sentiment over time. We then apply WOLVES to investigate the evolutionary effects of the most popular financial word list, Loughran and McDonald (LM) dictionary, in annual reports, conference calls, and financial news. We find that LM negative words become less negative over time in annual reports compared to conference calls and financial news, while LM positive words remain qualitatively unchanged. This finding reconciles with existing evidence that negative words are more subject to managers’ strategic communication. We also provide practical implications of WOLVES by correlating the sentiment evolution of LM negative words in annual reports with market reaction, earnings performance, and accounting fraud.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of management information systems, 2024, v. 41, no. 1, p. 178-205en_US
dcterms.isPartOfJournal of management information systemsen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85185285386-
dc.identifier.eissn1557-928Xen_US
dc.description.validate202504 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3487-
dc.identifier.SubFormID50233-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
dc.relation.rdatahttps://github.com/polyu-mm-boris-ng/WOLVES-Word-List-Vector-for-Sentiment-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zheng_Effects_Sentiment_Evolution.pdfPre-Published version1.34 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

1
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.