Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112162
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorResearch Centre for Data Science and Artificial Intelligence-
dc.contributorResearch Centre for Nanoscience and Nanotechnology-
dc.creatorLinghu, J-
dc.creatorButt, MK-
dc.creatorFeng, P-
dc.creatorYang, K-
dc.creatorYe, F-
dc.creatorYang, T-
dc.creatorChe, J-
dc.creatorYang, M-
dc.creatorLi, Z-
dc.date.accessioned2025-04-01T03:11:13Z-
dc.date.available2025-04-01T03:11:13Z-
dc.identifier.issn0272-8842-
dc.identifier.urihttp://hdl.handle.net/10397/112162-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectFirst-principles calculationen_US
dc.subjectMigration barrieren_US
dc.subjectProton incorporationen_US
dc.subjectProton-conducting electrolyteen_US
dc.subjectStructural deformationen_US
dc.titleMultivalent metal perovskite YbCoO₃ as a novel proton-conducting electrolyte for solid oxide fuel cellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2922-
dc.identifier.epage2929-
dc.identifier.volume51-
dc.identifier.issue3-
dc.identifier.doi10.1016/j.ceramint.2024.11.269-
dcterms.abstractFor solid oxide fuel cells, an electrolyte with good stability and high ion conductivity is highly desired but difficult to obtain. Recently, a novel hydrogenation mechanism other than water dissociation have been reported in multivalent metal-based oxides, which provide a new route to increase proton concentration as well as proton conductivity. In this computational study, we propose the multivalent metal perovskite YbCoO3 as a promising proton-conducting electrolyte due to its good thermodynamic and chemical stability, semiconductor characteristics, high-concentration proton incorporation, and low proton migration barrier. Our findings also reveal that charge compensation of the multivalent metal is crucial for the high-concentration proton incorporation. On the other hand, both the shortening of the O-O distance and the Co-H repulsion play key roles in determining the energy barrier to proton migration, where local structural deformations are responsible for facilitating intra- and inter-octahedron proton transfer in YbCoO3. Our results might assist in the development of high-performance proton-conducting electrolytes for advanced solid oxide fuel cells.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCeramics international, Jan. 2025, v. 51, no. 3, p. 2922-2929-
dcterms.isPartOfCeramics international-
dcterms.issued2025-01-
dc.identifier.scopus2-s2.0-85210548092-
dc.identifier.eissn1873-3956-
dc.description.validate202504 bcch-
dc.identifier.FolderNumbera3484aen_US
dc.identifier.SubFormID50229en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextKey Research and Development Program of Shaanxi Province; National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.