Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112158
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorDepartment of Computingen_US
dc.contributorResearch Centre for Data Science and Artificial Intelligenceen_US
dc.contributorResearch Centre for Nanoscience and Nanotechnologyen_US
dc.creatorYang, Ten_US
dc.creatorDing, Ken_US
dc.creatorZhou, Jen_US
dc.creatorMa, Xen_US
dc.creatorTan, KCen_US
dc.creatorWang, Gen_US
dc.creatorHuang, Hen_US
dc.creatorYang, Men_US
dc.date.accessioned2025-04-01T03:11:11Z-
dc.date.available2025-04-01T03:11:11Z-
dc.identifier.urihttp://hdl.handle.net/10397/112158-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subjectElectrocatalystsen_US
dc.subjectHeteronuclear single atom catalystsen_US
dc.subjectInter-site interactionen_US
dc.subjectOxygen reduction reactionen_US
dc.subjectSpecies-specific loading effectsen_US
dc.titleUnravelling species-specific loading effects on oxygen reduction activity of heteronuclear single atom catalystsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume9en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1002/smtd.202401333en_US
dcterms.abstractToward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the dxz and dyz orbitals’ occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationSmall methods, 17 May 2025, v. 9, no. 5, 2401333en_US
dcterms.isPartOfSmall methodsen_US
dcterms.issued2025-05-17-
dc.identifier.scopus2-s2.0-85209100761-
dc.identifier.eissn2366-9608en_US
dc.identifier.artn2401333en_US
dc.description.validate202504 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3484a-
dc.identifier.SubFormID50223-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; Guang-dong Natural Science Foundation; National Natural Science Foundation of China (NSFC)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-05-17en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-17
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

2
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Oct 24, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.