Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112156
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorHuang, YL-
dc.creatorYang, K-
dc.creatorYang, J-
dc.creatorDuan, S-
dc.creatorWang, Y-
dc.creatorSun, M-
dc.creatorZhang, YW-
dc.creatorYang, M-
dc.creatorWee, ATS-
dc.date.accessioned2025-04-01T03:11:10Z-
dc.date.available2025-04-01T03:11:10Z-
dc.identifier.issn1433-7851-
dc.identifier.urihttp://hdl.handle.net/10397/112156-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subjectCycloaddition reactionsen_US
dc.subjectFe catalysten_US
dc.subjectGraphiteen_US
dc.subjectOn-surface synthesisen_US
dc.subjectSelf-assembled supramolecular arraysen_US
dc.titleRedirecting on-surface cycloaddition reactions in a self-assembled ordered molecular array on graphiteen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1002/anie.202425185-
dcterms.abstractThe synthesis of atomically precise carbon nanostructures in ultra-high vacuum has seen extensive progress on metal surfaces. However, this remains challenging on chemically inert surfaces. It is because the thermally activated C−C coupling encounters a severe “desorption problem” on weakly interacting substrates. In this study, we report an extraordinary [2+2]+[2+2] cycloaddition triggered by mild annealing (~210°C) in a highly ordered π-conjugated molecular array on graphite using scanning tunneling microscopy. In contrast to irregular dendritic fragments typically obtained on metal substrates, large supramolecular islands are observed here with cycloaddition products and other polymers over 30 %, which are embedded as defective individuals or chains (grain boundaries). First-principles calculations reveal that the energy barriers of the multiple dehydrohalogenation and cycloaddition reactions are reduced by catalytic Fe atoms but remain energetically unfavorable. A distinct driving mechanism is proposed for redirecting the reactions on graphite surface, where additional intermolecular coupling, steric hindrance, and interfacial interactions play significant roles. This study introduces a new paradigm for understanding on-surface synthesis on non-metal substrates.-
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAngewandte chemie international edition, First published: 05 February 2025, Early View, e202425185, https://doi.org/10.1002/anie.202425185-
dcterms.isPartOfAngewandte chemie international edition-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-85218059742-
dc.identifier.eissn1521-3773-
dc.identifier.artne202425185-
dc.description.validate202504 bcch-
dc.identifier.FolderNumbera3484aen_US
dc.identifier.SubFormID50220en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; PolyU RCNN; Department of Science and Technology of Guangdong Province (GDSTC)en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.