Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112154
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorResearch Centre for Data Science and Artificial Intelligence-
dc.creatorWu, H-
dc.creatorChen, M-
dc.creatorCheng, H-
dc.creatorYang, T-
dc.creatorZeng, M-
dc.creatorYang, M-
dc.date.accessioned2025-04-01T03:11:08Z-
dc.date.available2025-04-01T03:11:08Z-
dc.identifier.urihttp://hdl.handle.net/10397/112154-
dc.language.isoenen_US
dc.publisherOAE Publishing Incen_US
dc.rights© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_US
dc.rightsThe following publication Wu, H.; Chen, M.; Cheng, H.; Yang, T.; Zeng, M.; Yang, M. Interpretable physics-informed machine learning approaches to accelerate electrocatalyst development. J. Mater. Inf. 2025, 5, 15 is available at http://dx.doi.org/10.20517/jmi.2024.67.en_US
dc.subjectElectrocatalystsen_US
dc.subjectExplainable artificial intelligenceen_US
dc.subjectMachine learningen_US
dc.subjectPhysics-informed machine learningen_US
dc.titleInterpretable physics-informed machine learning approaches to accelerate electrocatalyst developmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume5-
dc.identifier.issue2-
dc.identifier.doi10.20517/jmi.2024.67-
dcterms.abstractIdentifying exceptional electrocatalysts from the vast materials space remains a formidable challenge. Machine learning (ML) has emerged as a powerful tool to address this challenge, offering high efficiency while maintaining good accuracy in predictions. From this perspective, we provide a brief overview of recent advancements in ML for electrocatalyst discoveries. We emphasize the applications of physics-informed ML (PIML) models and explainable artificial intelligence (XAI) to electrocatalyst development, through which valuable physical and chemical insights can be distilled. Additionally, we delve into the challenges faced by PIML approaches, explore future directions, and discuss potential breakthroughs that could revolutionize the field of electrocatalyst development.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials informatics, 2025, v. 5, no. 2, 15-
dcterms.isPartOfJournal of materials informatics-
dcterms.issued2025-
dc.identifier.eissn2770-372X-
dc.identifier.artn15-
dc.description.validate202504 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3484aen_US
dc.identifier.SubFormID50218en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University; Guangdong Natural Science Foundationen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
jmi4067_down.pdf15.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.