Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112135
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorLiu, L-
dc.creatorPeng, G-
dc.creatorZhang, M-
dc.creatorDou, J-
dc.creatorLiu, C-
dc.creatorShi, T-
dc.creatorHuang, H-
dc.creatorWang, C-
dc.creatorHe, H-
dc.creatorChen, Z-
dc.creatorChai, Y-
dc.creatorWang, J-
dc.creatorZou, X-
dc.creatorLiao, L-
dc.creatorWang, J-
dc.creatorZhou, P-
dc.date.accessioned2025-03-27T03:14:48Z-
dc.date.available2025-03-27T03:14:48Z-
dc.identifier.urihttp://hdl.handle.net/10397/112135-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication L. Liu, P. Gao, M. Zhang, J. Dou, C. Liu, T. Shi, H. Huang, C. Wang, H. He, Z. Chen, Y. Chai, J. Wang, X. Zou, L. Liao, J. Wang, P. Zhou, Two-Dimensional MoS2-Based Anisotropic Synaptic Transistor for Neuromorphic Computing by Localized Electron Beam Irradiation. Adv. Sci. 2024, 11, 2408210 is available at https://doi.org/10.1002/advs.202408210.en_US
dc.subjectAnisotropic synapseen_US
dc.subjectColored-digit recognitionen_US
dc.subjectConnection heterogeneityen_US
dc.subjectElectron beam irradiationen_US
dc.subjectLocalized dopingen_US
dc.subjectMultiterminal transistoren_US
dc.subjectNeuromorphic computingen_US
dc.titleTwo-dimensional MoS2-based anisotropic synaptic transistor for neuromorphic computing by localized electron beam irradiationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume11-
dc.identifier.issue45-
dc.identifier.doi10.1002/advs.202408210-
dcterms.abstractNeuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for the development of next-generation computing and sensing systems. Axon-multisynapse systems enable the execution of sophisticated tasks, making them not only desirable but essential for future applications in this field. Anisotropic materials, which have different properties in different directions, are being used to create artificial synapses that can mimic the functions of biological axon-multisynapse systems. However, the restricted variety and unadjustable conductive ratio limit their applications. Here, it is shown that anisotropic artificial synapses can be achieved on isotropic materials with externally localized doping via electron beam irradiation (EBI) and purposefully induced trap sites. By employing the synapses along different directions, artificial neural networks (ANNs) are constructed to accomplish variable neuromorphic tasks with optimized performance. The localized doping method expands the axon-multisynapse device family, illustrating that this approach has tremendous potentials in next-generation computing and sensing systems.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced science, 4 Dec. 2024, v. 11, no. 45, 2408210-
dcterms.isPartOfAdvanced science-
dcterms.issued2024-12-04-
dc.identifier.scopus2-s2.0-85206337155-
dc.identifier.eissn2198-3844-
dc.identifier.artn2408210-
dc.description.validate202503 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program; National Natural Science Foundation of China; Shanghai Science and Technology Development Funds; Scienti?c and Technological Bases and Talents of Guangxen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Two_Dimensional_MoS2.pdf3.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

10
Citations as of Apr 1, 2025

Downloads

4
Citations as of Apr 1, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.